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ABSTRACT
We present Rubin Data Preview 1 (DP1), the first data from the NSF-DOE Vera C. Rubin Ob-
servatory, comprising raw and calibrated single-epoch images, coadds, difference images, detection
catalogs, and ancillary data products. DP1 is based on 1792 optical/near-infrared exposures ac-
quired over 48 distinct nights by the Rubin Commissioning Camera, LSSTComCam, on the Si-



159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

monyi Survey Telescope at the Summit Facility on Cerro Pachén, Chile in late 2024. DP1 covers
~15 deg? distributed across seven roughly equal-sized non-contiguous fields, each independently ob-
served in six broad photometric bands, ugrizy. The median FWHM of the point-spread function
across all bands is approximately 1714, with the sharpest images reaching about (//58. The 50 point
source depths for coadded images in the deepest field, Extended Chandra Deep Field South, are:
u = 24.55,g = 26.18,r = 25.96,i = 25.71,z = 25.07,y = 23.1. Other fields are no more than 2.2
magnitudes shallower in any band, where they have nonzero coverage. DP1 contains approximately
2.3 million distinct astrophysical objects, of which 1.6 million are extended in at least one band in
coadds, and 431 solar system objects, of which 93 are new discoveries. DP1 is approximately 3.5 TB
in size and is available to Rubin data rights holders via the Rubin Science Platform, a cloud-based
environment for the analysis of petascale astronomical data. While small compared to future LSST
releases, its high quality and diversity of data support a broad range of early science investigations

ahead of full operations in late 2025.

Keywords: Rubin Observatory — LSST

1. INTRODUCTION

The National Science Foundation (NSF)-Department
of Energy (DOE) Vera C. Rubin Observatory is a
ground-based, wide-field optical/near-infrared facility
located on Cerro Pachén in northern Chile. Named in
honor of Vera C. Rubin, a pioneering astronomer whose
groundbreaking work in the 20th century provided the
first convincing evidence for the existence of dark mat-
ter (V. C. Rubin & W. K. Ford 1970; V. C. Rubin et al.
1980), the observatory’s prime mission is to carry out the
Legacy Survey of Space and Time (formerly Large Syn-
optic Survey Telescope) (LSST) (Z. Ivezi¢ et al. 2019a).
This 10-year survey is designed to obtain rapid-cadence,
multi-band imaging of the entire visible southern sky
approximately every 3—4 nights. Over its main 18,000
deg? footprint, the LSST is expected to reach a depth
of ~ 27 magnitude in the r-band, with ~800 visits per
pointing in all filters (F. B. Bianco et al. 2022).

The Rubin Observatory system consists of four main
components: the Simonyi Survey Telescope, featuring
an 8.4 m diameter (6.5 m effective aperture) primary
mirror that delivers a wide field of view; a 3.2-gigapixel
camera, capable of imaging 9.6 square degrees per ex-
posure”™ with seeing-limited quality in six broadband
filters, ugrizy (320-1050 nm); an automated Data Man-
agement System that processes and archives tens of ter-
abytes of data per night, generating science-ready data
products within minutes for a global community of sci-
entists; and an Education and Public Outreach (EPO)

* Author is deceased
79 We define an “exposure” as the process of exposing all detectors
in the focal plane. It is synonymous with the term “visit” in
DP1. By contrast, an “image” is the output of a single detector
following an exposure.
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program that provides real-time data access, interactive
tools, and educational content to engage the public. The
integrated system’s étendue®® of 319 m? deg?, is over an
order of magnitude larger than that of any previous op-
tical observatory, enabling a fast, large-scale survey with
exceptional depth in a fraction of the time compared to
other observatories.

The observatory’s design is driven by four key science
themes: probing dark energy and dark matter; taking
an inventory of the solar system; exploring the tran-
sient and variable optical sky; and mapping the Milky
Way (Z. Ivezi¢ et al. 2019a). These themes inform the
optimization of a range of system parameters, includ-
ing image quality, photometric and astrometric accu-
racy, the depth of a single visit and the co-added survey
depth, the filter complement, the total number of visits
per pointing as well as the distribution of visits on the
sky, and total sky coverage. Additionally, they inform
the design of the data processing and access systems.
By optimizing the system parameters to support a wide
range of scientific goals, we maximize the observatory’s
scientific output across all areas, making Rubin a pow-
erful discovery machine capable of addressing a broad
range of astrophysical questions.

Throughout the duration of the LSST, Rubin Obser-
vatory will issue a series of Data Releases, each repre-
senting a complete reprocessing of all LSST data col-
lected up to that point. Prior to the start of the LSST
survey, commissioning activities will generate a signifi-
cant volume of science-grade data. To make this early
data available to the community, the Rubin Early Sci-
ence Program (L. P. Guy et al. 2025) was established.

80 The product of the primary mirror area and the angular area
of its field of view for a given set of observing conditions.
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One key component of this program is a series of Data
Previews; early versions of the LSST Data Releases.
These previews include preliminary data products de-
rived from both simulated and commissioning data,
which, together with early versions of the data access
services, are intended to support high-impact early sci-
ence, facilitate community readiness, and inform the de-
velopment of Rubin’s operational capabilities ahead of
the start of full survey operations. All data and services
provided through the Rubin Early Science Program are
offered on a shared-risk basis®!.

This paper describes Rubin’s second of three planned
Data Previews: Data Preview 1 (DP1) (NSF-DOE Vera
C. Rubin Observatory 2025a). The first, Data Preview
0 (DP0)®, contained data products produced from the
processing of simulated LSST-like data sets, together
with a very early version of the Rubin Science Platform
(M. Jurié¢ et al. 2019). DP1 contains data products de-
rived from the reprocessing of science-grade exposures
acquired by the Rubin Commissioning Camera (LSST-
ComCam), in late 2024. The third and final Data Pre-
view, Data Preview 2 (DP2), is planned to be based
on a reprocessing of all science-grade data taken with
the Rubin’s LSST Science Camera (LSSTCam) during
commissioning and is expected to be released around
mid-2026.

All Rubin Data Releases and Previews are subject
to a two-year proprietary period, with immediate ac-
cess granted exclusively to LSST data rights holders (R.
Blum & the Rubin Operations Team 2020). Data rights
holders®® are individuals or institutions with formal au-
thorization to access proprietary data collected by the
Vera C. Rubin Observatory. After the two-year propri-
etary period, DP1 will be made public.

In this paper, we present the contents and validation
of, and the data access and community support ser-
vices for, Rubin DP1, the first Data Preview to deliver
data derived from observations conducted by the Vera
C. Rubin Observatory. DP1 is based on the reprocess-
ing of 1792 science-grade exposures acquired during the
first on-sky commissioning campaign conducted in late
2024. It covers a total area of approximately ~15 deg?
distributed across seven distinct non-contiguous fields.
The data products include raw and calibrated single-
epoch images, coadded images, difference images, de-

81 Shared risk means early access with caveats: the community
benefits from getting a head start on science, preparing anal-
yses, and providing feedback, while also accepting that the
system may not work as well as it will during full operations.

82 See https://dp0.1sst.io

83 See https://www.lsst.org/scientists/international-drh-list
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tection catalogs, and other derived data products. DP1
is about 3.5 TB in size and contains around 2.3 million
distinct astronomical objects, detected in 2644 coadded
images. Full DP1 release documentation is available at
https://dpl.1sst.io. Despite Rubin Observatory still be-
ing in commissioning and not yet complete at the time
the observations were acquired, Rubin DP1 provides an
important first look at the data, showcasing its charac-
teristics and capabilities.

The structure of this paper is as follows. In section
2 we describe the observatory system and overall con-
struction and commissioning status at the time of data
acquisition, the seven fields included in DP1, and the
observing strategy used. Section 3 summarizes the con-
tents of DP1 and the data products contained in the
release. The data processing pipelines are described in
section 4, followed by a description of the data valida-
tion and performance assessment in section 5. Section
6 describes the Rubin Science Platform (RSP), a cloud-
based data science infrastructure that provides tools and
services to Rubin data rights holders to access, visual-
ize and analyze peta-scale data generated by the LSST.
Section 7 presents the Rubin Observatory’s model for
community support, which emphasizes self-help via doc-
umentation and tutorials, and employs an open platform
for issue reporting that enables crowd-sourced solutions.
Finally, a summary of the DP1 release and information
on expected future releases of data is given in section 8.
The appendix contains a useful glossary of terms used
throughout this paper.

All magnitudes quoted are in the AB system (J. B.
Oke & J. E. Gunn 1983), unless otherwise specified.

2. ON-SKY COMMISSIONING CAMPAIGN

The first Rubin on-sky commissioning campaign was
conducted using the LSSTComCam. The campaign’s
primary objective was to optically align the Simonyi
Survey Telescope and verify its ability to deliver accept-
able image quality using LSSTComCam. In addition,
the campaign provided valuable operations experience
to facilitate commissioning the full LSSTCam (T. Lange
et al. 2024; A. Roodman et al. 2024). We note that
commissioning LSSTComCam was not an objective of
the campaign. Instead, LSSTComCam was used as a
tool to support broader observatory commissioning, in-
cluding early testing of the Active Optics System (AOS)
and the LSST Science Pipelines. As a result, many arti-
facts present in the data are specific to LSSTComCam
and will be addressed only if they persist with LSST-
Cam. Accordingly, the image quality achieved during
this campaign, and in the DP1 data, do not reflect the
performance ultimately expected from LSSTCam.
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Approximately 16,000 exposures were collected during
this campaign, the majority in support of AOS commis-
sioning, system-level verification, and end-to-end testing
of the telescope’s hardware and software. This included
over 10000 exposures for AOS commissioning, more than
2000 bias and dark calibration frames, and over 2000
exposures dedicated to commissioning the LSST Sci-
ence Pipelines. For DP1, we have selected a subset of
1792 science-grade exposures from this campaign that
are most useful for the community to begin preparing
for early science.

At the time of the campaign, the observatory was
still under construction, with several key components,
such as dome thermal control, full mirror control, and
the final AOS configuration either incomplete or still
undergoing commissioning. As a result, image qual-
ity varied widely throughout the campaign and exhib-
ited a broader distribution than is expected with LSST-
Cam. Despite these limitations, the campaign success-
fully demonstrated system integration and established a
functional observatory.

2.1. Simonyi Survey Telescope

The Simonyi Survey Telescope (B. Stalder et al. 2024)
features a unique three-mirror design, including an 8.4-
meter Primary Mirror Tertiary Mirror (M1M3) fabri-
cated from a single substrate, and a 3.5-meter Secondary
Mirror (M2). This compact configuration supports a
wide 3.5-degree field of view while enabling exceptional
stability, allowing the telescope to slew and settle in un-
der five seconds. To achieve the scientific goals of the
10-year LSST, the Observatory must maintain high im-
age quality across its wide field of view (Z. Ivezi¢ et al.
2019b). This is accomplished through the AOS (B. Xin
et al. 2015; G. Megias Homar et al. 2024), which cor-
rects, between successive exposures, wavefront distor-
tions caused by optical misalignments and mirror surface
deformations, primarily due to the effect of gravitational
and thermal loads.

The AOS, which comprises an open-loop component
and a closed-loop component, optimizes image qual-
ity by aligning the camera and M2 relative to M1M3,
as well as adjusting the shapes of all three mirrors
to nanometer precision. The AOS open-loop compo-
nent corrects for predictable distortions and misalign-
ments, while the closed-loop component addresses un-
predictable or slowly varying aberrations using feed-
back from the corner wavefront sensors. The closed-
loop wavefront sensing technique is curvature wavefront
sensing, which infers wavefront errors in the optical sys-
tem by analyzing extra- and intra-focal star images (S.
Thomas et al. 2023). Since LSSTComCam lacks dedi-
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cated wavefront sensors, wavefront errors were instead
estimated by defocusing the telescope +1.5 mm on ei-
ther side of focus and applying the curvature wavefront
sensing pipeline to the resulting images. Each night be-
gan with an initial alignment correction using a laser
tracker to position the system within the capture range
of the closed-loop algorithm (G. Megias Homar et al.
2024). Once this coarse alignment was complete, the
AOS refined the optical alignment and applied mirror
surfaces corrections to optimize the image quality across
the LSSTComCam field of view.

During LSST Science Pipelines commissioning (§2.4),
observations were conducted using the AOS in open-
loop mode only, without closed-loop corrections between
exposures. Closed-loop operation, which requires ad-
ditional intra- and extra-focal images with LSSTCom-
Cam, was not compatible with the continuous data ac-
quisition needed by the pipelines. The image quality
for these data was monitored by measuring the Point
Spread Function (PSF) Full Width at Half-Maximum
(FWHM), and closed-loop sequences were periodically
run when image quality degradation was observed.

2.2. The LSST Commissioning Camera

LSSTComCam (B. Stalder et al. 2022, 2020; J.
Howard et al. 2018; SLAC National Accelerator Lab-
oratory & NSF-DOE Vera C. Rubin Observatory 2024)
is a 144-megapixel version of the 3.2-gigapixel LSST-
Cam. It covers approximately 5% of the LSSTCam focal
plane area, with a field of view of ~0.5 deg? (40'x40’),
compared to LSSTCam’s 9.6 deg?. It was developed to
validate camera interfaces with other observatory com-
ponents and evaluate overall system performance prior
to the start of LSSTCam commissioning. Although it
has a smaller imaging area, LSSTComCam shares the
same plate scale of 0”2 per pixel and is housed in a sup-
port structure that precisely replicates the total mass,
center of gravity, and physical dimensions of LSSTCam.
All mechanical and utility interfaces to the telescope are
implemented identically, enabling full end-to-end test-
ing of observatory systems, including readout electron-
ics, image acquisition, and data pipelines.

The LSSTCam focal plane is composed of 25 modular
rafts arranged in a 5x5 grid; 21 rafts are dedicated to
science imaging, while four corner rafts are used for guid-
ing and wavefront sensing. Each science raft is a self-
contained unit comprising nine 4K x4K Charge-Coupled
Device (CCD) (G. E. Smith 2010) sensors arranged in a
3x3 mosaic, complete with integrated readout electron-
ics and cooling systems. Each sensor is subdivided into
16 segments arranged in a 2x8 layout, with each seg-
ment consisting of 512x2048 pixels and read out in par-
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allel using individual amplifiers. LSSTCam uses CCD
sensors from two vendors: Imaging Technology Labora-
tory, University of Arizona (UA)) (ITL) and Teledyne
(E2V). To maintain uniform performance and calibra-
tion each raft is populated with sensors from only one
vendor.

LSSTComCam consists of a single science raft
equipped exclusively with ITL sensors. The sensors se-
lected for LSSTComCam represent the best performing
of the remaining ITL devices after the LSSTCam rafts
were fully populated. They exhibit known issues such
as high readout noise (e.g., Detector 8, S22 in Figure 2)
and elevated Charge Transfer Inefficiency (CTI) (e.g.,
Detector 5, S12 in Figure 2). As a result, certain im-
age artifacts present in the DP1 dataset may be spe-
cific to LSSTComCam. Although the cryostat in LSST-
ComCam, uses a different cooling system than that of
LSSTCam, LSSTComCam incorporated a refrigeration
pathfinder to validate the cryogenic refrigeration system
intended for LSSTCam,. Figure 1 shows the single-raft
LSSTComCam positioned at the center of the full LSST-
Cam focal plane, corresponding to the central science
raft position. LSSTComCam is designated as Raft 22
(R22).

~ |

\/

Figure 1. Schematic showing the single-raft LSSTComCam
positioned at the center of the full LSSTCam focal plane.
The perspective is from above, looking down through the
LSSTComCam lenses onto the focal plane. Credit: Rubi-
nObs/NOIRLab/SLAC/NSF/DOE/AURA.

The LSSTCam and LSSTComCam focal planes are
described in detail in A. A. Plazas Malagén et al. (2025).
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Figure 2. LSSTComCam focal plane layout illustrating the
placement and numbering scheme of sensors (S) and ampli-
fiers (C). The view is looking down from above the focal plane
through the LSSTComCam lenses. Each sensor contains 16
amplifiers, and a group of nine sensors comprises one raft.
LSSTComCam is Raft 22 (R22). The detector number for
each sensor is shown in parentheses.

2.2.1. Filter Complement

LSSTComCam supports imaging with six broadband
filters ugrizy spanning 320-1050 nm, identical in de-
sign to LSSTCam. Whereas the LSSTCam filter ex-
changer holds five filters, the LSSTComCam exchanger
holds only three at a time. The full-system throughput
of the six LSSTComCam filters, which encompasses con-
tributions from a standard atmosphere at airmass 1.2,
telescope optics, camera surfaces, and the mean ITL de-
tector quantum efficiency is shown in Figure 3.

2.2.2. Timing Calibration

The absolute time accuracy of data taken with LSST-
ComCam relies on the Network Time Protocol (NTP)
for clock synchronization, which should be accurate
to approximately 1 millisecond. In order to evaluate
the absolute timing accuracy of the entire system we
observed the geosynchronous satellite EUTELSAT 117
West B with a set of 10 usable 10-second exposures over
two nights. EUTELSAT 117 West B is part the GPS
system and serves as one of the WAAS (Wide Area Aug-
mentation System) satellites operated for the U.S. Fed-
eral Aviation Administration (FAA) and used to broad-
cast GPS corrections to air traffic.

As these satellites are part of the GPS system, their
positions are tracked very precisely and the record of
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Figure 3. LSSTComCam standard bandpasses, illustrating
full system throughput. The bandpasses include a standard
atmosphere at airmass 1.2, telescope optics, camera surfaces,
and mean ITL detector quantum efficiency.

their locations is published after the fact and can be
downloaded. Following the technique previously em-
ployed by other surveys, (J. L. Tonry et al. 2018), we
observed the satellite while tracking the sky and then
downloaded the data-files with its precise locations from
the National Satellite Test Bed web site®*. By compar-
ing the measured and predicted locations of the start of
the satellite track on the sky, we determined that (rela-
tive to the start of integration-time recorded in the FITS
headers) our time was accurate to 53.6 + 11.0 millisec-
onds.

This work continues to be an area of ongoing study, as
the exact timing of when the shutter open command is
issued, and the complete profile of the shutter movement
are not yet determined. However the open command
is on average near 29 milliseconds later. Incorporating
the delays into the fit reduces the offset to 24.8 + 11.0
milliseconds.

The full shutter takes approximately 396 milliseconds
to completely open. As the LSSTComCam sensors are
centered in the aperture, the center of the focal plane
should be exposed about half-way through the shutter
open procedure, 198 milliseconds after the open com-
mand. There are uncertainties on the full motion pro-
file, and the blade direction motions are currently not
known, but the fraction of the shutter aperture sub-
tended by the focal plane is 52%. This implies that the
shutter will pass any pixel between 198 + 103 millisec-
onds. Subtracting this from the fitted delay of 24.8 mil-
liseconds and adding the fitted error of 11.0 milliseconds
in quadrature, results in a current conservative estimate

84 https://www.nstb.tc.faa.gov/nstbarchive.html
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of the delay of -173.2 £+ 104.1 milliseconds, consistent
with and smaller than the constraints on the timing off-
set determined using astrometric residuals from known
asteroid associations presented in §5.10.2.

2.3. Flat Field System

During the on-sky campaign, key components of the
Rubin calibration system (P. Ingraham et al. 2022),
including the flat field screen, had not yet been in-
stalled. As a result, flat fielding for DP1 relied en-
tirely on twilight flats. While twilight flats pose chal-
lenges such as non-uniform illumination and star print-
through, they were the only available option during
LSSTComCam commissioning and for DP1 processing.
To mitigate these limitations, dithered, tracked expo-
sures were taken over a broad range of azimuth and rota-
tor angles to construct combined flat calibration frames.
Exposure times were dynamically adjusted to reach tar-
get signal levels of between 10,000 and 20,000 electrons.
Future campaigns will benefit from more stable and uni-
form flat fielding using the Rubin flat field system, de-
scribed in P. Fagrelius & E. S. Rykoff (2025).

2.4. LSST Science Pipelines Commissioning

Commissioning of the LSST Science Pipelines, (Rubin
Observatory Science Pipelines Developers 2025), began
once the telescope was able to routinely deliver sub-
arcsecond image quality. The goals included testing the
internal astrometric and photometric calibration across
a range of observing conditions, validating the difference
image analysis and Prompt Processing (K.-T. Lim 2023)
framework, and accumulating over 200 visits per band
to evaluate deep coadded images with integrated expo-
sure times roughly equivalent to those of the planned
LSST Wide Fast Deep (WFD) 10-year depth. To sup-
port these goals, seven target fields were selected that
span a range of stellar densities, overlap with external
reference datasets, and collectively span the full breadth
of the four primary LSST science themes. These seven
fields form the basis of the DP1 dataset. Figure 4 shows
the locations of these seven fields on the sky, overlaid on
the LSST baseline survey footprint (R. L. Jones et al.
2021; P. Yoachim 2022; Rubin’s Survey Cadence Opti-
mization Committee et al. 2022, 2023, 2025), along with
sky coverage of both the LSSTCam and LSSTComCam
focal planes.

Each of the seven target fields was observed repeat-
edly in multiple bands over many nights. A typical ob-
serving epoch on a given target field consisted of 5-20
visits in each of the three loaded filters (§2.2.1). All DP1
images were captured as single 1x30-second exposures
for all bands, rather than as 2x15-second “snap” expo-
sures. Additionally, some u-band exposures were taken
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Figure 4. Locations of the seven DP1 fields overlaid on the LSST baseline survey footprint (Rubin’s Survey Cadence Opti-
mization Committee et al. 2025). NES: North Ecliptic Spur, SCP: South Celestial Pole, Low-Dust WFD: regions away from the
Galactic Plane (GP) observed with a WFD cadence, GP/MC WFD: Galactic Plane and Magellanic Clouds regions observed
with a WFD cadence. The fields of view covered by the LSSTCam and LSSTComCam focal planes are represented as outer
and inner concentric circles, respectively, centered on the pointing center of each field.

as 38-second exposures. The exposure time for LSST im-
ages will be determined following further testing during
the commissioning phase with LSSTCam. All images
were acquired using the Rubin Feature-Based Scheduler
(FBS), version 3.0 (E. Naghib et al. 2019; P. Yoachim
et al. 2024). Table 1 lists the seven DP1 fields and their
pointing centers, and provides a summary of the band
coverage in each.

The temporal sampling distribution of observations
per band and per night is shown in Figure 5. Gaps
in coverage across some bands arise from the fact that
LSSTComCam can only hold three filters at a time (see
§2.2.1). As the campaign progressed, the temporal sam-
pling became denser across all fields, reflecting improved
efficiency and increased time allocated for science obser-
vations.

It is important to note that the time sampling in the
DP1 dataset differs significantly from what will be seen
in the final LSST data. Table 2 lists the 50 point source
depths for coadded images per field and per band, where
coverage in a band is non-zero.
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Figure 5. Distribution of DP1 observations by date grouped
by field as a function of time over the 48 nights of data taking
with LSSTComCam. Each dot represents a single exposure,
color-coded by band.

All fields except for the low ecliptic latitude field, Ru-
bin_SV_38_7, used a small random dithering pattern.
The random translational dithers of the telescope bore-



595

596

597

598

599

600

601

602

603

604

605

606

607

608

600

611

612

613

614

10

Table 1. DP1 fields and pointing centers with the number of exposures in each band per field. ICRS coordinates are in units

of decimal degrees, and are specified as J2000.

Field Code Field Name RA DEC Band Total
deg deg v g r i z y

47 Tuc 47 Tucanae Globular Cluster 6.128  -72.090 6 10 32 19 0 5 72
ECDFS Extended Chandra Deep Field South 53.160 -28.100 43 230 237 162 153 30 855
EDFS_ comcam Rubin SV Euclid Deep Field South 59.150 -48.730 20 61 87 42 42 20 272
Fornax_ dSph Fornax Dwarf Spheroidal Galaxy 40.080 -34.450 0 5 25 12 0 O 42
Rubin_ SV 095 -25 Rubin SV Low Galactic Latitude Field 95.040 -25.000 33 82 84 23 60 10 292
Rubin SV 38 7 Rubin SV Low Ecliptic Latitude Field 37.980 7.015 0 44 40 55 20 O 159
Seagull Seagull Nebula 106.300 -10.510 10 37 43 0 10 O 100
Total 112 469 548 313 285 65 1792

Table 2. Median 50 coadd point source detection limits per
field and band.

Field Code Band

u g r 7 z Y
47 Tuc - 24.03 24.24 23.90 - 21.79
ECDFS 24.55 26.18 25.96 25.71 25.07 23.10
EDFS__comcam 23.42 25.77 25.72 25.17 24.47 23.14
Fornax_ dSph - 2453 25.07 24.64 - -
Rubin_SV_095_-25 24.29 25.46 24.95 24.86 24.32 22.68
Rubin_SV_38 7 - 2546 25.15 24.86 23.52 -
Seagull 23.51 24.72 24.19 - 2330 -

sight were applied for each visit, with offsets of up to
0.2 degrees around the pointing center (Table 1). The
rotational dithers of the camera rotator were typically
approximately 1 degree per visit, with larger random
offsets at each filter change, which worked to keep oper-
ational efficiency high. The Rubin_SV_ 38 7 field used
a different dither pattern to optimize coverage of So-
lar System Objects and test Solar System Object link-
ing across multiple nights. These observations used a
2x2 grid of LSSTComCam pointings to cover an area
of about 1.3 degreex1.3 degrees. The visits cycled be-
tween the grid’s four pointing centers, using small ran-
dom translational dithers to fill chip gaps with the goal
of acquiring 3-4 visits per pointing center per band in
each observing epoch.

2.5. Delivered Image Quality

The delivered image quality is influenced by contribu-
tions from both the observing system (i.e., dome, tele-
scope and camera) and the atmosphere. During the
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campaign, the Rubin Differential Image Motion Monitor
(DIMM) was not operational, so atmospheric seeing was
estimated using live data from the Southern Astrophys-
ical Research Telescope (SOAR) Ring-Image Next Gen-
eration Scintillation Sensor (RINGSS) seeing monitor,
also located on Cerro Pachon. Although accelerometers
mounted on the mirror cell and top-end assembly were
available to track dynamic optics effects, such as mir-
ror oscillations that can degrade optical alignment, this
data was not used during the campaign. Mount encoder
data were used to measure the mount jitter in every im-
age, with a measured median contribution of 0.004 arc-
seconds to image degradation. As the pointing model
was not fine-tuned, tracking errors could range from 0.2
to 0.4 arcseconds per image, depending on RA and Dec.
Dome and mirror-induced seeing were not measured dur-
ing the campaign.

The DP1 median delivered image quality across all
bands is 1714, as measured by the PSF FWHM. The
best images achieved a PSF FWHM of approximately
0”58. Ongoing efforts aim to quantify all sources of im-
age degradation, including contributions from the cam-
era system, static and dynamic optical components, tele-
scope mount motion, observatory-induced seeing from
the dome and mirror, and atmospheric conditions.

3. OVERVIEW OF THE CONTENTS OF RUBIN
DP1

Here we describe Rubin DP1 data products and pro-
vide summary statistics for each. The DP1 science data
products are derived from the 15972 individual CCD
images taken across 1792 exposures in the seven LSST-
ComCam commissioning fields (§2.4).

The data products that comprise DP1 provide an early
preview of future LSST data releases and are strongly
dependent on the type and quality of the data that was
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Figure 6. Sky coverage maps showing the distribution of visits in each field, color coded by band. The images clearly show
the focal plane chip gaps and dithering pattern. Only the detectors for which single frame processing succeeded are included in
the plots, which explains why the central region of 47_ Tuc looks thinner than the other fields.

collected during LSSTComCam on-sky campaign (§2.4).
Consequently not all anticipated LSST data products,
as described in the Data Product Definition Document
(DPDD) (M. Juri¢ et al. 2023) were produced for the
DP1 dataset.

Rubin Observatory has adopted the convention by
which single-epoch detections are referred to as Sources.
By contrast, the astrophysical object associated with a
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given detection is referred to as an Object ®°. As such, a
given Object will likely have multiple associated Sources,
since it will be observed in multiple epochs.

At the highest level, the DP1 data products fall into
one of five types:

85 We caution that this nomenclature is not universal; for exam-
ple, some surveys call “detections” what we call “sources”, and
use the term “sources” for what we call “objects”.
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Figure 7. Cumulative distribution of PSF FWHM (arcsec)
over all 16071 visits images in the DP1 dataset for each filter.
The vertical dashed lines represent the median PSF FWHM
at 1.46, 1.36, 1.24, 1.18 and 1.20 arcsec for the ugrizy wave-
bands, respectively.

¢ Images, including single-epoch images, deep and
template coadded images, and difference images;

o Catalogs of astrophysical Sources and Objects de-
tected and measured in the aforementioned im-
ages. We also provide the astrometric and photo-
metric reference catalog generated from external
sources that was used during processing to gener-
ate the DP1 data products;

e Maps, which provide non-science-level visualiza-
tions of the data within the release. They include,
for example, zoomable multi-band images and cov-
erage maps;

e Ancillary data products, including, for exam-
ple, the parameters used to configure the data
processing pipelines, log and processing perfor-
mance files, and calibration data products (e.g.,
CTTI models, brighter-fatter kernels, etc.);

e Metadata in the form of tables containing infor-
mation about each visit and processed image, such
as pointing, exposure time, and a range of image
quality summary statistics.

While images and catalogs are expected to be the pri-
mary data products for scientific research, we also rec-
ognize the value of providing access to other data types
to support investigations and ensure transparency.
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Table 3. Tract coverage of each DP1 field. The size of a
tract is larger than the LSSTCam field of view; however,
since each observed field extends across more than one tract,
each field covers multiple tracts.

Field Code Tract ID
47 _Tuc 453, 454
ECDFS 4848, 4849, 5062, 5063, 5064

EDFS_ comcam
Fornax_ dSph
Rubin_ SV_095_-25
Rubin_ SV _38 7

2234, 2235, 2393, 2394
4016, 4017, 4217, 4218
5305, 5306, 5525, 5526

10221, 10222, 10463, 10464, 10704,
10705

Seagull 7610, 7611, 7849, 7850

To facilitate processing, Rubin DP1 uses a single
skymap®® that covers the entire sky area encompassing
the seven DP1 fields. The DP1 skymap divides the en-
tire celestial sphere into 18938 tracts, each covering ap-
proximately 2.8 deg?. Each tract is further subdivided
into 10 timesl0 equally-sized patches, with each patch
covering roughly 0.028 deg?. Both tracts and patches
overlap with their neighboring regions. Since the LSST-
ComCam only observed ~15 deg? of the sky during its
campaign, only 29 out of the 18938 tracts have cover-
age in DP1. The tract identification numbers and cor-
responding target names for these tracts are listed in
Table 3. The size of a tract is larger than the LSSTCam
field of view; however, since each observed field extends
across more than one tract, each field covers multiple
tracts.

The skymap is integral to the production of co-added
images. To create a coadded image, the processing
pipeline selects all calibrated science images in a given
field that meet specific quality thresholds (§3.1 and
§4.5.1) for a given patch, warps them onto a single
consistent pixel grid for that patch, as defined by the
skymap, then coadds them. Each individual coadd im-
age therefore covers a single patch. Coadded images and
the catalogs of detections from them are termed tract-
level data products. By contrast, visit-level data prod-
ucts are those derived from individual LSSTComCam
exposures, such as a raw image or a catalog of detections
from a single calibrated image. Most science data prod-
ucts (i.e., images and catalogs) in DP1 are either tract

86 A skymap is a tiling of the celestial sphere, organizing large-
scale sky coverage into manageable sections for processing and
analysis.
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or visit—level, the main exception being the Calibra-
tion reference catalog.

Throughout this section, the data product names are
indicated using monospace font. Data products are ac-
cessed via either the International Virtual Observatory
Alliance (IVOA) Services ( §6.2.1) or the Data Butler
(§6.2.2), or both.

3.1. Science Images

Science images are exposures of the night sky, as dis-
tinct from calibration images (§3.6.2). Although the re-
lease includes calibration images, allowing users to re-
process the raw images if needed, this is expected to
be necessary only in rare cases. Users are strongly en-
couraged to start from the visit-level images provided.
The data product names shown here are those used by
the Data Butler, but the names used in the IVOA Ser-
vices differ only slightly in that they are prepended by
“lsst.”

o raw images (NSF-DOE Vera C. Rubin Observa-
tory 2025b) are unprocessed data received directly
from the camera. Each raw corresponds to a sin-
gle CCD from a single LSSTComCam exposure of
30 s duration. Each LSSTComCam exposure typ-
ically produces up to nine raws, one per sensor in
the focal plane. However, a small number of expo-
sures resulted in fewer than nine raw images due
to temporary hardware issues or readout faults.

In total, DP1 includes 16125 raw images. Ta-
ble 4 provides a summary by target and band. A
raw contains 4608 x 4096 pixels, including pres-
can and overscan, and occupies around 18 MB of
disk space.?” The field of view of a single raw, ex-
cluding prescan and overscan regions, is roughly
0°23 x0°22 ~0.051 deg?, corresponding to a plate
scale of (/2 per pixel.

o visit_images (NSF-DOE Vera C. Rubin Obser-
vatory 2025c) are fully-calibrated processed im-
ages. They have undergone instrument signature
removal (§4.2.1) and all the single frame process-
ing steps described in §4.2 which are, in summary:
PSF modeling, background subtraction, and as-
trometric and photometric calibration. As with
raws, a visit_image contains processed data from
a single CCD resulting from a single 30 s LSST-
ComCam exposure. As a consequence, a single

87 Each amplifier image contains 3 and 64 columns of serial pres-
can and overscan pixels, respectively, and 48 rows of parallel
overscan pixels, meaning a raw contains 4072 x4000 exposed
pixels.
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Table 4. Number of raw images per field and band. Each raw
image corresponds to a single 30-second LSSTComCam expo-
sure on one CCD. Most exposures produce nine raw images, one
per sensor in the focal plane, however some yield fewer due to
occasional hardware or readout issues.

Field Code Band Total
u g r % z Y

47 _Tuc 54 90 288 171 0 45 648
ECDFS 387 20702133 1455 1377270 7692
EDFS__ comcam 180 549 783 378 378 180 2448
Fornax_ dSph 0 45 225 108 0 0 378
Rubin_SV_095_-25 297 738 756 207 540 90 2628
Rubin_SV_38 7 0 396 360 495 180 O 1431
Seagull 90 333 387 0 90 0 900
Total 1008 4221 4932 2814 2565 585 16125

LSSTComCam exposure typically results in nine
visit_images. The handful of exposures with
fewer than nine raw images also have fewer than
nine visit_images, but there are an additional
153 raw that failed processing and for which there
is thus no corresponding visit_image. Almost all
failures were due to challenges with astrometric fits
or PSF models in crowded fields.

In total, there are 15972 visit_images in DP1I.
Each visit_image comprises three images: a cal-
ibrated science image, a variance image, and a
pixel-level bitmask that flags issues such as sat-
uration, cosmic rays, or other artifacts. Fach
visit_image also contains a position-dependent
PSF model, World Coordinate System (WCS) in-
formation, and various metadata providing infor-
mation about the observation and processing. The
science and variance images and the pixel mask
each contain 4072 x 4000 pixels. In total, a single
visit_image, including all extensions and meta-
data, occupies around 110 MB of disk space.

 deep_coadds (NSF-DOE Vera C. Rubin Observa-
tory 2025d) are the product of warping and co-
adding multiple visit_images covering a given
patch, as defined by the skymap. deep_coadds
are created on a per-band basis, meaning only
data from exposures taken with a common filter
are coadded. As such, there are up to six deep_-
coadds covering each patch — one for each of the
six LSSTComCam bands. The process of produc-
ing deep_coadds is described in detail in §4.5 but,
to summarize, it involves the selection of suitable
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visit_images (both in terms of patch coverage,
band, and image quality), the warping of those
visit_images onto a common pixel grid, and the
co-adding of the warped visit_images. To be
included in a DP1 deep_coadd, a visit_image
needed to have a PSF FWHM smaller than 177.
Of the 15972 visit_images, 15375 satisfied this
criterion and were therefore used to create deep_-
coadds.

There are a total of 2644 deep_coadds in DPI1.
As mentioned above, a single deep_coadd covers
one patch, and includes a small amount of over-
lap with its neighboring patch. The skymap used
for DP1 defines a patch as having an on-sky area
of 0.028 deg? excluding overlap, and 0.036 deg?®
including overlap. A single deep_coadd — includ-
ing overlap — contains 3400 x 3400 equal-sized
pixels, corresponding to a platescale of 072 per
pixel. Each deep_coadd contains the science im-
age (i.e., the coadd), a variance image, and a pixel
mask; all three contain the same number of pix-
els. Each deep_coadd also contains a position-
dependent PSF model (which is the weighted sum
of the PSF models of the input visit_images),
WCS information, plus various metadata.

Since coadds always cover an entire patch, it is
common for a deep_coadd to contain regions that
were not covered by any of the selected visit_im-
ages, particularly if the patch is on the outskirts
of a field and was thus not fully observed. By
the nature of how coadds are produced, such re-
gions may contain seemingly valid flux values (i.e.,
not necessarily zeros or NaNs), but will instead be
flagged with the NO_DATA flag in the pixel mask. It
is therefore crucial that the pixel mask be referred
to when analyzing deep_coadds.

template_coadds (NSF-DOE Vera C. Rubin Ob-
servatory 2025¢) are those created to use as tem-
plates for difference imaging, i.e., the process of
subtracting a template image from a visit_image
to identify either variable or transient objects.®®
As with deep_coadds, template_coadds are pro-
duced by warping and co-adding multiple visit_-
images covering a given skymap-defined patch.

88 1t should be noted that template_coadds are not themselves

subtracted from visit_images but are, instead, warped to
match the WCS of a visit_image. It is this warped template
that is subtracted from the visit_image to create a difference
image. For storage space reasons, warped templates are not
retained for DP1, as they can be readily and reliably recreated
from the template_coadds.

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

The process of building template_coadds is the
same as that for deep_coadds, but the selection
criteria differ between the two types of coadd.
In the case of template_coadds, one third of
visit_images covering the patch in question with
the narrowest PSF FWHM are selected. If one
third corresponds to fewer than twelve visit_im-
ages (i.e., there are fewer than 36 visit_images
covering the patch), then the twelve visit_im-
ages with the narrowest PSF FWHM are selected.
Finally, if there are fewer than twelve visit_im-
ages covering the patch, then all visit_images
are selected. Of the 15972 visit_images, 13113
were used to create template_coadds. This se-
lection strategy is designed to optimize for seeing
when a patch is well-covered by visit_images, yet
still enable the production of template_coadds for
poorly-covered patches.

DP1 contains a total of 2730 template_coadds.®”
As with deep_coadds, a single template_coadd
covers a single patch. Since the same skymap is
used when creating both deep_coadd and tem-
plate_coadds, the on-sky area and pixel count of
template_coadds are the same as that of a deep_-
coadd (see above). Similarly, template_coadds
contain the science image (i.e., the coadd), a vari-
ance image, and a pixel mask; all three contain the
same number of pixels. Also included are the PSF
model, WCS information, and metadata. As is
the case for deep_coadd, those pixels within tem-
plate_coadds that are not covered by any of the
selected visit_images may still have seemingly
valid values, but are indicated with the NO_DATA
flag within the pixel mask.

difference_images (NSF-DOE Vera C. Rubin
Observatory 2025f) are generated by the subtrac-
tion of the warped, scaled, and PSF-matched tem—
plate_coadd from the visit_image (see §4.6.1).
In principle, only those sources whose flux has
changed relative to the template_coadd should be
apparent (at a significant level) within a differ-
ence_image. In practice, however, there are nu-
merous spurious sources present in difference_-
images due to unavoidably imperfect template
matching.

In total, there are 15972 difference_images in
DP1, one for each visit_image.

89 The difference in the number of deep_coadds and template_-
coadds is due to the difference in the visit_image selection
criteria for each coadd.
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Like visit_images, difference_images contain
the science (i.e., difference) image, a variance im-
age, and a pixel mask; all three contain the same
number of pixels, which is the same as that of
the input visit_image. Also included is the PSF
model, WCS information, and metadata.

¢ Background images contain the model background
that has been generated and removed from a
science image. visit_images, deep_coadds and
template_coadds all have associated background
images.”Y Background images contain the same
number of pixels as their respective science im-
age, and there is one background image for each
visit_image, deep_coadd, and template_coadd.
Difference imaging analysis also measures and sub-
tracts a background model, but the difference_-
background data product is not written out by
default and is not part of DP1.

Background images are not available via the IVOA
Service; they can only be accessed via the Butler
Data Service.

3.2. Catalogs

Here we describe science-ready tables produced by the
science pipelines. All but one of the catalogs described
here contain data for detections in the images described
in section 3.1, the exception being the Calibration cat-
alog, which contains reference data obtained from previ-
ous surveys. Observatory-produced metadata tables are
described in §3.5 Each type of catalog contains mea-
surements for either Sources detected in visit_images
and difference_images, or Objects detected in deep_-
coadds.

While the Source, Object, ForcedSource,
Source, DiaObject, and ForcedSourceOnDiaObject
catalogs described below each differ in terms of their
specific columns, in general they each contain: one or
more unique identification numbers, positional informa-
tion, one or more types of flux measurements (e.g., aper-
ture fluxes, PSF fluxes, Gaussian fluxes, etc.), and a se-
ries of boolean flags (indicating, for example, whether
the source/object is affected by saturated pixels, cosmic
rays, etc.) for each source/object. The Solar System
catalogs SSObject and SSSource deviate from this gen-
eral structure in that they instead contain orbital pa-
rameters for all known asteroids. Where applicable, all
measured properties are reported with their associated
1o uncertainties.

Dia-

90 Tn future data releases, background images may be included as
part of their respective science image data product.
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Since DP1 is a preview, it doesn’t include all the cat-
alogs expected in a full LSST Data Release. Addition-
ally, the catalogs it does include may be missing some
columns planned for future releases. Where this is the
case, we note what data are missing in the catalog de-
scriptions that follow.

Catalog data are stored in the Qserv database (§6.5.1)
and are accessible via Table Access Protocol (IVOA
standard) (IVOA), and an online DP1 catalog schema
is available at https://sdm-schemas.lsst.io/dpl.html.
Catalog data are also accessible via the Data Butler
(§6.2.2).

o The Source catalog (NSF-DOE Vera C. Rubin
Observatory 2025g) contains data on all sources
which are, prior to deblending (§4.5.2), detected
with a greater than 50 significance in each individ-
ual visit. The detections reported in the Source
catalog have undergone deblending; in the case of
blended detections, only the deblended sources are
included in the Source catalog. It is important
to note that while the criterion for inclusion in a
Source catalog is a > 5o detection in a visit_im-
age prior to deblending, the positions and fluxes
are reported post-deblending. Hence, it is possible
for the Source catalog to contain sources whose
flux-to-error ratios — potentially of all types (i.e.,
aperture flux, PSF flux, etc.) — are less than 5.

In addition to the general information mentioned
above (i.e., IDs, positions, fluxes, flags), the
Source catalog also includes basic shape and ex-
tendedness information.

The Source catalog contains data for 46 million
sources in DP1.

o The Object catalog (NSF-DOE Vera C. Rubin
Observatory 2025h) contains data on all objects
detected with a greater than 5o significance in the
deep_coadds. With coadd images produced on a
per-band basis, a > 50 detection in one or more of
the bands will result in an object being included in
the Object catalog. For cases where an object is
detected at > 50 in more than one band, a cross-
matching has been performed between bands to
associate an object in one band with its counter-
part(s) in the other bands. As such, unlike the
Source catalog, the Object catalog contains data
from multiple bands. The objects reported in the
Object catalog have also undergone deblending; in
the case of blended detections, only the deblended
child objects are included in the catalog. As with
the Source catalog, the criterion for inclusion in
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the Object catalog is a > 5o detection in one
of the deep_coadds prior to deblending, yet the
positions and fluxes of objects are reported post-
deblending. Hence, it is possible for Object cata-
log to contain objects whose flux-to-error ratios
— potentially of all types and in all bands — are
less than 5.

In addition to the general information mentioned
above (i.e., IDs, positions, fluxes, flags), the Ob-
ject catalog also includes basic shape and extend-
edness information. While they may be included
in future data releases, no photometric redshifts,
Petrosian magnitudes (V. Petrosian 1976), proper
motions or periodicity information are included in
the DP1 object catalogs.

The Object catalog contains data for 2.3 million
objects in DP1.

The ForcedSource catalog (NSF-DOE Vera C.
Rubin Observatory 2025i) contains forced PSF
photometry measurements performed on both
difference_images (i.e., the psfDiffFlux col-
umn) and visit_images (i.e., the psfFlux col-
umn) at the positions of all the objects in the
Object catalog, to allow assessment of the time
variability of the fluxes. We recommend using
the psfDiffFlux column when generating light
curves because this quantity is less sensitive to flux
from neighboring sources than psfFlux. In addi-
tion to forced photometry PSFE fluxes, a number
of boolean flags are also included in the Forced-
Source catalog.

The ForcedSource catalog contains a total of 269
million entries across 2.3 million unique objects.

The DiaSource catalogs (NSF-DOE Vera C. Ru-
bin Observatory 2025j) contains data on all the
sources detected at a > 5o significance — includ-
ing those associated with known Solar System ob-
jects —in the difference_images. Unlike sources
detected in visit_images, sources detected in
difference images (hereafter, “DiaSources”) have
gone through an association step in which an at-
tempt has been made to associate them into un-
derlying objects called “DiaObject”s. The Dia-
Source catalog consolidates all this information
across multiple visits and bands. The detections
reported in the DiaSource catalog have not un-
dergone deblending.

The DiaSource catalog contains data for 3.1 mil-
lion DiaSources in DP1.
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o The DiaObject catalog (NSF-DOE Vera C. Rubin

Observatory 2025k) contains the astrophysical ob-
jects that DiaSources are associated with (i.e., the
“DiaObjects”). The DiaObject catalog contains
only non-Solar System Objects; Solar System Ob-
jects are, instead, recorded in the SSObject cata-
log. When a DiaSource is identified, the DiaOb-
ject and SSObject catalogs are searched for ob-
jects to associate it with. If no association is found,
a new DiaObject is created and the DiaSource is
associated to it. Along similar lines, an attempt
has been made to associate DiaObjects across mul-
tiple bands, meaning the DiaObject catalog, like
the Object catalog, contains data from multi-
ple bands. Since DiaObjects are typically tran-
sient or variable (by the nature of their means of
detection), the DiaObject catalog contains sum-
mary statistics of their fluxes, such as the mean
and standard deviation over multiple epochs; users
must refer to the ForcedSourceOnDiaObject cat-
alog (see below) or the DiaSource catalog for sin-
gle epoch flux measurements of DiaObjects.

The DIAObject catalog contains data for 1.1 mil-
lion DiaObjects in DP1.

The ForcedSourceOnDiaObject catalog (NSF-
DOE Vera C. Rubin Observatory 20251) is equiv-
alent to the ForcedSource catalog, but contains
forced photometry measurements obtained at the
positions of all the DiaObjects in the DiaObject
catalog.

The ForcedSourceOnDiaObject catalog contains
a total of 197 million entries across 1.1 million
unique DiaObjects.

The CcdVisit catalog (NSF-DOE Vera C. Ru-
bin Observatory 2025m) contains data for each
individual processed visit_image. In addition
to technical information, such as the on-sky co-
ordinates of the central pixel and measured pixel
scale, the CcdVisit catalog contains a range of
data quality measurements, such as whole-image
summary statistics for the PSF size, zeropoint, sky
background, sky noise, and quality of astrometric
solution. It provides an efficient method to access
visit_image properties without needing to access
the image data.

The CcdVisit catalog contains entries summariz-

ing data for all 16071 visit_images.

The SS0bject catalog (NSF-DOE Vera C. Rubin
Observatory 2025n), Minor Planet Center Orbit
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database (MPCORB) and SSObject, carry infor-
mation about solar system objects. The MPCORB
table provides the Minor Planet Center-computed
orbital elements for all known asteroids, includ-
ing those that Rubin discovered. For DP1, the
SSObject catalog serves primarily to provide the
mapping between the International Astronomical
Union (IAU) designation of an object (listed in
MPCORB), and the internal ssObjectld identifier,
which is used as a key to find solar system object
observations in the DiaSource and SSSource ta-
bles.

e The SSSource catalog (NSF-DOE Vera C. Ru-
bin Observatory 20250) contains data on all Dia-
Sources that are either associated with previously-
known Solar System Objects, or have been con-
firmed as newly-discovered Solar System Objects
by confirmation of their orbital properties. As en-
tries in the SSSource catalog stem from the Di-
aSource catalog, they have all been detected at
> 50 significance in at least one band. The SS-
Source catalog contains data for 5988 Solar Sys-
tem Sources.

e The Calibration catalog is the reference catalog
that was used to perform astrometric and photo-
metric calibration. It is a whole-sky catalog built
specifically for LSST, as no single prior reference
catalog had both the depth and coverage needed
to calibrate LSST data. It combines data from
multiple previous reference catalogs and contains
only stellar sources. Full details on how the Cal-
ibration catalog was built are provided in P. S.
Ferguson et al. (2025) ?1. We provide a brief sum-
mary here.

For the grizy bands, the input catalogs were (in
order of decreasing priority): Dark Energy Sur-
vey (DES) Y6 Calibration Stars (E. S. Rykoff
et al. 2023); Gaia-B or R Photometry (Gaia)
(XP) Synthetic Magnitudes (Gaia Collaboration
et al. 2023a); the Panoramic Survey Telescope
and Rapid Response System (Pan-STARRS)1 3PI
Survey (K. C. Chambers et al. 2016); Data Re-
lease 2 of the SkyMapper survey (C. A. Onken
et al. 2019); and Data Release 4 of the VLT Sur-
vey Telescope (VST) Asteroid Terrestrial-impact
Last Alert System (ATLAS) survey (T. Shanks
et al. 2015). For the w-band, the input catalogs

91 In P. S. Ferguson et al. (2025), the calibration reference catalog
is referred to as “The Monster”. This terminology is also carried
over to the DP1 Butler.
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were (in order of decreasing priority): Standard
Stars from Sloan Digital Sky Survey (SDSS) Data
Release 16 (R. Ahumada et al. 2020); Gaia-XP
Synthetic Magnitudes (Gaia Collaboration et al.
2023a); and synthetic magnitudes generated us-
ing Single Lens Reflex (SLR), which estimates the
u-band flux from the g-band flux and g-r colors.
This SLR estimates were used to boost the num-
ber of u-band reference sources, as otherwise the
source density from the w-band input catalogs is
too low to be useful for the LSST.

Only stellar sources were selected from each input
catalog. Throughout, the Calibration catalog
uses the DES bandpasses for the grizy bands and
the SDSS bandpass for the u-band; color trans-
formations derived from high quality sources were
used to convert fluxes from the various input cat-
alogs (some of which did not use the DES/SDSS
bandpasses) to the respective bandpasses. All
sources from the input catalogs are matched to
Gaia-Data Release 3 (DR3) sources for robust
astrometric information, selecting only isolated
sources (i.e., no neighbors within 1”).

After collating the input catalogs and transform-
ing the fluxes to the standard DES/SDSS band-
passes, the catalog was used to identify sources
within a specific region of the sky. This process
generated a set of standard columns containing
positional and flux information, along with their
associated uncertainties.

3.2.1. Source and Object Designations

To refer to individual sources or objects from the DP1
catalogs, one should follow the LSST DP1 naming con-
vention that has been registered with the International
Astronomical Union. Because the Source, Object, Di-
aSource, DiaObject, and SSObject tables each have
their own unique IDs, their designations should dif-
fer. In general, source designations should begin with
the string “LSST-DP1” (denoting the Legacy Survey
of Space and Time, Data Preview 1), followed by a
string specifying the table from which the source was
obtained. These strings should be “O” (for the 0b-
ject table), “S” (Source), “DO” (DiaObject), “DS”
(DiaSource), or “SSO” (8S0bject). Following the table
identifier, the designation should contain the full unique
numeric identifier from the specified table (i.e., the ob-
jectld, sourceld, diaObjectld, diaSourceld, or ssObjec-
tId). Each component of the identifier should be sep-
arated by dashes, resulting in a designation such as
“LSST-DP1-TAB-123456789012345678”. In summary,
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source designations should adhere to the formats listed
below:

e Object: LSST-DP1-0-609788942606161356 (for
objectId 609788942606161356)

e Source: LSST-DP1-S-600408134082103129 (for
sourceld 600408134082103129)

o DiaObject: LSST-DP1-D0O-609788942606140532
(for diaObjectld 609788942606140532)

o DiaSource: LSST-DP1-DS-600359758253260853
(for diaSourceld 600359758253260853)

e SSObject:  LSST-DP1-SS0-21163611375481943
(for ssObjectId 21163611375481943)

Tables that were not explicitly mentioned in the de-
scription above do not have their own unique IDs, but
are instead linked to one of the five tables listed above
via a unique ID. For example, the ForcedSource ta-
ble is keyed on objectld, ForcedSourceOnDiaObject
uses diaObjectld, SSSource is linked to diaSourceld and
ssObjectld, and MPCORB uses ssObjectld.

3.3. Survey Property Maps

Maps are two-dimensional visualizations of survey
data. In DPI1, these fall into two categories: Sur-
vey Property Maps and Hierarchical Progressive Sur-
vey (HiPS) Maps (P. Fernique et al. 2015). Survey
Property Maps (NSF-DOE Vera C. Rubin Observatory
2025p) summarize how properties such as observing con-
ditions or exposure time vary across the observed sky.
Each map provides the spatial distribution of a spe-
cific quantity at a defined sky position for each band
by aggregating information from the images used to
make the deep_coadd. Maps are initially created per-
tract and then combined to produce a final consolidated
map. At each sky location, represented by a spatial pixel
in the Hierarchical Equal-Area iso-Latitude Pixelisation
(HEALPix)(K. M. Goérski et al. 2005) grid, values are
derived using statistical operations, such as minimum,
maximum, mean, weighted mean, or sum, depending on
the property.

DP1 contains 14 survey property maps. The avail-
able maps describe total exposure times, observation
epochs, PSF size and shape, PSF magnitude limits,
sky background and noise levels, as well as astro-
metric shifts and PSF distortions due to wavelength-
dependent atmospheric Differential Chromatic Refrac-
tion (DCR) effects. They all use the dataset type
format deep_coadd_<PROPERTY>_consolidated_map_-
<STATISTIC>. For example, deep_coadd_exposure_-
time_consolidated_map_sum provides a spatial map of

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

the total exposure time accumulated per sky position in
units of seconds. All maps are stored in HealSparse”?
format. Survey property maps are only available via
the Data Butler (§6.2.2) and have dimensions band and
skymap.

Figure 8 presents three survey property maps for ex-
posure time, PSF magnitude limit, and sky noise, com-
puted for representative tracts and bands. Because full
consolidated maps cover widely separated tracts, we use
clipped per-tract views here to make the spatial patterns
more discernible. Many more survey property maps are
available in the DP1 repository.

3.4. HiPS Maps

HiPS Maps (P. Fernique et al. 2015), offer an inter-
active way to explore seamless, multi-band tiles of the
sky regions covered by DP1, allowing for smooth pan-
ning and zooming. DP1 provides multi-band HiPS im-
ages created by combining data from individual bands
of deep_coadd and template_coadd images. These im-
ages are false-color representations generated using var-
ious filter combinations for the red, green, and blue
channels. The available filter combinations include gri,
izy, riz, and ugr for both deep_coadd and template_-
coadd. Additionally, for deep_coadd only, we provide
color blends such as uug and grz. Post-DP1, we plan
to also provide single-band HiPS images for all ugrizy
bands in both Portable Network Graphics (PNG) and
Flexible Image Transport System (FITS) formats.

HiPS maps are only accessible through the HiPS
viewer in the Rubin Science Platform (RSP) Portal
(§6.3) and cannot be accessed via the Data Butler
(§6.2.2). All multi-band HiPS images are provided in
PNG format.

3.5. Metadata

DP1 also includes metadata about the observations,
which are stored in the Visit table. The data it con-
tains was produced by the observatory directly, rather
than the science pipelines. It contains technical data
for each visit, such as telescope pointing, camera rota-
tion, airmass, exposure start and end time, and total
exposure time.

3.6. Ancillary Data Products

DP1 also includes several ancillary data products.
While we do not expect most users to need these, we
describe them here for completeness. All the Data Prod-

92 A sparse HEALPix representation that efficiently encodes data
values on the celestial sphere. https://healsparse.readthedocs.
io
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Exposure time sum map
Tract: 10463, Band: r, Coadd: deep

37.0° 53.5°

PSF magnitude limit weighted mean map
Tract: 5063, Band: z, Coadd: deep

53.0°

Sky noise weighted mean map
Tract: 5063, Band: g, Coadd: deep

52.5° 53.5° 53.0° 52.5°

=27.0°

=27.0°

Dec.

—28.0°

) 275

[eSEIMaglim](mao)s)]
Dec

—28.0°

R.A.

(a) Exposure time sum map for deep_-
coadd tract 10463, r-band in field Ru-
bin SV_38 7

R.A.

(b) 50 PSF magnitude limit weighted
mean map for deep_coadd tract 5063,
z-band in field ECDFS

53.0°
R.A.

(c) Sky noise weighted mean map for
deep_coadd tract 5063, z-band in field
ECDFS

Figure 8. Examples of survey property maps from Rubin DP1 across different bands, clipped to the boundary of a single tract

for visual clarity.

ucts described in this section can only be accessed via
the Data Butler (§6.2.2).

3.6.1. Task configuration, log, and metadata

DP1 includes provenance-related data products such
as task logs, configuration files, and task metadata.
Configuration files record the parameters used in each
processing task, while logs and metadata contain infor-
mation output during processing. These products help
users understand the processing setup and investigate
potential processing failures.

3.6.2. Calibration Data Products

Calibration data products include a variety of images
and models that are used to characterize and correct
the performance of the camera and other system com-
ponents. These include bias, dark, and flat-field images,
Photon Transfer Curve (PTC) gains, brighter-fatter ker-
nels (P. Antilogus et al. 2014), charge transfer ineffi-
ciency (CTI) models, linearizers, and illumination cor-
rections. For flat-field corrections, DP1 processing used
combined flats, which are averaged from multiple indi-
vidual flat-field exposures to provide a stable calibra-
tion. These calibration products are essential inputs
to Instrument Signal Removal (ISR) (§4.2.1). While
these products are included in DP1 for transparency and
completeness, users should not need to rerun ISR for
their science and are advised to start with the processed
visit_image.

4. DATA RELEASE PROCESSING

Data Release Processing (DRP) is the systematic pro-
cessing of all Rubin Observatory data collected up to
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a certain date to produce the calibrated images, cata-
logs of detections, and derived data products described
in Section 3. DP1 was processed entirely at the United
States Data Facility (USDF) at SLAC using 17,024 CPU
hours.”3

This section describes the pipeline algorithms used to
produce DP1 and how they differ from those planned for
full-scale LSST data releases. Data Release Production
consists of four major stages: (1) single-frame process-
ing, (2) calibration, (3) coaddition, and (4) difference
image analysis (DIA).

4.1. LSST Science Pipelines Software

The LSST Science Pipelines software (Rubin Obser-
vatory Science Pipelines Developers 2025; J. Swinbank
et al. 2020) will be used to generate all Rubin Observa-
tory and LSST data products. It provides both the algo-
rithms and middleware frameworks necessary to process
raw data into science-ready products, enabling analysis
by the Rubin scientific community. Version v29.1 of the
pipelines was used to produce DP1%4,

4.2. Single Frame Processing

4.2.1. Instrument Signature Removal

The first step in processing LSSTComCam images is
to correct for the effects introduced by the telescope and
detector. Each sensor and its readout amplifiers can

93 For future Data Releases, data processing will be distributed
across the USDF, the French (FrDF)and UK (UKDF) data
facilities.

94 Documentation for this version is available at:
pipelines.Isst.io/v/v29 1 1

https://


https://pipelines.lsst.io/v/v29_1_1
https://pipelines.lsst.io/v/v29_1_1
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vary slightly in performance, causing images of even a
uniformly illuminated focal plane to exhibit discontinu-
ities and shifts due to detector effects. The ISR pipeline
aims to recover the original astrophysical signal as best
as possible and produce science-ready single-epoch im-
ages for source detection and measurement. A detailed
description of the ISR procedures can be found in P. Fa-
grelius & E. S. Rykoff (2025); A. A. Plazas Malagén et al.
(2025). Figure 9 illustrates the model of detector com-
ponents and readout electronics and their impact on the
signal, tracing the process from photons incident on the
detector surface to the final quantized values’® recorded
in the image files. The ISR pipeline essentially “works
backward” through the signal chain, correcting the in-
teger analog-to-digital units (ADU) raw camera output
back to a floating-point number of photoelectrons cre-
ated in the silicon. The physical detector, shown on the
left in Figure 9, is the source of effects that arise from the
silicon itself, such as the dark current and the brighter-
fatter effect (A. A. Plazas et al. 2018; A. Broughton
et al. 2024). After the integration time has elapsed, the
charge is shifted to the serial register and read out, which
can introduce charge transfer inefficiencies and a clock-
injected offset level. The signals for all amplifiers are
transferred via cables to the Readout Electronics Board
(REB), during which crosstalk between the amplifiers
may occur. The Analog Signal Processing Integrated
Circuit (ASPIC) on the REB converts the analog sig-
nal from the detector into a digital signal, adding both
quantization and a bias level to the image. Although
the signal chain is designed to be stable and linear, the
presence of numerous sources of non-linearity indicates
otherwise.

The ISR processing pipeline for DP1 performs, in
the following order: Analogue-to-Digital Unit (ADU)
dithering to reduce quantization effects, serial over-
scan subtraction, saturation masking, gain normaliza-
tion, crosstalk correction, parallel overscan subtraction,
linearity correction, serial CTI correction, image assem-
bly, bias subtraction, dark subtraction, brighter-fatter
correction, defect masking and interpolation, variance
plane construction, flat fielding, and amplifier offset
(amp-offset) correction”. Flat fielding for DP1 was per-
formed using combined flats produced from twilight flats

95 The images written to disk by the camera have values that are
integers that come from the ADC converting an analog voltage.

96 Amp-offset corrections are designed to address systematic dis-
continuities in background sky levels across amplifier bound-
aries. The implementation in the LSST Science Pipelines is
based on the Pan-STARRS Pattern Continuity algorithm (C. Z.
Waters et al. 2020).
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acquired with sufficient rotational dithering to mitigate
artifacts from print-through stars, as described in §2.3.
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Figure 9. The model of the detector and REB components,
labeled with the effects that they impart on signal.

4.2.2. Background Subtraction

The background subtraction algorithms in the LSST
Science Pipelines estimate and remove large-scale back-
ground signals from science imaging. Such signals may
include sky brightness from airglow, moonlight, scat-
tered light instrumental effects, zodiacal light, and dif-
fuse astrophysical emission. In so doing, true astrophys-
ical sources are isolated to allow for accurate detection
and measurement.

To generate a background model, each post-ISR image
is divided into superpixels of 128 x 128 pixels. Pixels
with a mask flag set that indicates that they contain
no useful science data or that they contain flux from a
preliminary source detection are masked. The iterative
30 clipped mean of the remaining pixels is calculated
for each superpixel, constructing a background statistics
image. A sixth-order Chebyshev polynomial is fit to
these values on the scale of a single detector to allow for
an extrapolation back to the native pixel resolution of
the post-ISR image.

4.3. Calibration

Stars are detected in each post-ISR image using a 5o
threshold. Detections of the same star across multiple
images are then associated to identify a consistent set
of isolated stars with repeated observations suitable for
use in PSF modeling, photometric calibration, and as-
trometric calibration.

Initial astrometric and photometric solutions are de-
rived using only the calibration reference catalogs (see
§3.2), and an initial PSF model is fit using PSFEx (E.
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Bertin 2011). These preliminary solutions provide ap-
proximate source positions, fluxes, and PSF shapes that
serve as essential inputs to the calibration process, en-
abling reliable source matching, selection of high-quality
stars, and iterative refinement of the final astrometric,
photometric, and PSF models. These preliminary solu-
tions are subsequently replaced by more accurate fits, as
described in the following sections.

4.3.1. PSF Modeling

PSF modeling in DP1 uses the Piff (M. Jarvis et al.
2021) package. Our configuration of Piff utilizes its Pix-
elGrid model with a fourth-order polynomial interpola-
tion per CCD, except in the u-band, where star counts
are insufficient to support a fourth-order fit. In this
case, a second-order polynomial is used instead. Details
on the choice of polynomial order, overall PSF modeling
performance, and known issues are discussed in §5.2.

4.3.2. Astrometric Calibration

Starting from the astrometric solution calculated in
single frame processing (§4.2), the final astrometric so-
lution is computed using the ensemble of visits in a given
band that overlap a given tract. This allows the astro-
metric solution to be further refined by using all of the
isolated point sources of sufficient signal-to-noise ratio
in an image, rather than only those that appear in the
reference catalog, as is done in single frame processing.
Using multiple whole visits rather than a single detector
also allows us to account for effects that impact the full
focal plane, and for the proper motion and parallax of
the sources.

In order to perform the fit of the astrometric solu-
tion, isolated point sources are associated between over-
lapping visits and with the Gaia DR3 (Gaia Collabora-
tion et al. 2023b) reference catalog where possible. The
model used for DP1 consists of a static map from pixel
space to an intermediate frame (the per-detector model),
followed by a per-visit map from the intermediate frame
to the plane tangent to the telescope boresight (the per-
visit model), then finally a deterministic mapping from
the tangent plane to the sky. The fit is done using the
gbdes package (G. M. Bernstein et al. 2017), and a full
description is given in C. Saunders (2024).

The per-detector model is intended to capture quasi-
static characteristics of the telescope and camera. Dur-
ing Rubin Operations, the astrometric solution will al-
low for separate epochs with different per-detector mod-
els, to account for changes in the camera due to warm-
ing and cooling and other discrete events. However, for
DP1, LSSTComCam was assumed to be stable enough
that all visits use the same per-detector model. The
model itself is a separate two-dimensional polynomial for
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each detector. For DP1, a degree 4 polynomial was used;
the degree of the polynomial mapping is tuned for each
instrument and may be different for LSSTCam. Fur-
ther improvements may be made by including a pixel-
based astrometric offset mapping, which would be fit
from the ensemble of astrometric residuals, but this is
not included in the DP1 processing.

The per-visit model attempts to account for the path
of a photon from both atmospheric sources and those
dependent on the telescope orientation. This model is
also a polynomial mapping, in this case a degree 6 two-
dimensional polynomial. Correction for DCR (§5.4) was
not done for DP1, but will be included in LSSTCam pro-
cessing during Rubin Operations. Future processing will
also likely include a Gaussian Process fit to better ac-
count for atmospheric turbulence, as was demonstrated
by W. F. Fortino et al. (2021) and P. F. Léget et al.
(2021).

The final component of the astrometric calibration
involves the positions of the isolated point sources in-
cluded in the fit, which are described by five parameters:
sky coordinates, proper motion, and parallax. While
proper motions and parallaxes are not released for DP1,
they are fitted for these sources in the astrometric solu-
tion to improve the astrometric calibration.

4.3.3. Photometric Calibration

Photometric calibration of the DP1 dataset is based
on the Forward Global Calibration Method (FGCM)
(FGCM D. L. Burke et al. 2018), adapted for the LSST
Science Pipelines (H. Aihara et al. 2022; P. Fagrelius &
E. S. Rykoff 2025). We used the FGCM to calibrate
the full DP1 dataset with a forward model that uses a
parameterized model of the atmosphere as a function of
airmass along with a model of the instrument through-
put as a function of wavelength. The FGCM process
typically begins with measurements of the instrumental
throughput, including the mirrors, filters, and detectors.
However, because full scans of the LSSTComCam as-
built filters and individual detectors were not available,
we instead used the nominal reference throughputs for
the Simonyi Survey Telescope and LSSTCam.?” These
nominal throughputs were sufficient for the DP1 cal-
ibration, given the small and homogeneous focal plane
consisting of only nine I'TL detectors. The FGCM atmo-
sphere model, provided by MODTRAN (A. Berk et al.
1999), was used to generate a look-up table for atmo-
spheric throughput as a function of zenith distance at
Cerro Pachén. This model accounts for absorption and
scattering by molecular constituents of the atmosphere,

97 Available at: https://github.com/lIsst/throughputs/tree/1.9


https://github.com/lsst/throughputs/tree/1.9

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

22

including Oy and Ogs; absorption by water vapor; and
Mie scattering by airborne aerosol particulates. Nightly
variations in the atmosphere are modeled by minimiz-
ing the variance in repeated observations of stars with
a Signal to Noise Ratio (SNR) greater than 10, mea-
sured using “compensated aperture fluxes”. These fluxes
include a local background subtraction (see §4.2.2) to
mitigate the impact of background offsets. The model
fitting process incorporates all six bands (ugrizy) but
does not include any gray (achromatic) terms, except
for a linear assumption of mirror reflectance degrada-
tion, which is minimal over the short duration of the
DP1 observation campaign. As an additional constraint
on the fit, we use a subset of stars from the reference
catalog (P. S. Ferguson et al. 2025), primarily to con-
strain the system’s overall throughput and establish the
“absolute” calibration.

4.4. Visit Images and Source Catalogs

With the final PSF models, WCS solutions, and pho-
tometric calibrations in place, we reprocess each single-
epoch image to produce a final set of calibrated visit
images and source catalogs. Source detection is per-
formed down to a 5o threshold using the updated PSF
models, followed by measurement of PSF and aperture
fluxes. These catalogs represent the best single-epoch
source characterization, but they are not intended for
constructing light curves. For time-domain analysis,
we recommend using the forced photometry tables de-
scribed in §4.6.2.

4.5. Coaddition Processing
4.5.1. Coaddition

Only exposures with a seeing better than 1.7 arcsec-
onds FWHM are included in the deep coadded images.
For the template coadds, typically only the top third of
visits with the best seeing are used (although see §3.1 for
more details), resulting in an even tighter image qual-
ity cutoff for the template coadds. Exposures with poor
PSF model quality, identified using internal diagnostics,
are excluded to prevent contamination of the coadds
with unreliable PSF estimates. The remaining expo-
sures are combined using an inverse-variance weighted
mean stacking algorithm.

To mitigate transient artifacts before coaddition, we
apply the artifact rejection procedure described in Y. Al-
Sayyad (2018) that identifies and masks features such as
satellite trails, optical ghosts, and cosmic rays. It oper-
ates on a time series of PSF-matched images resampled
onto a common pixel grid (“warps”) and leverages their
temporal behavior to distinguish persistent astrophysi-
cal sources from transient artifacts.
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Artifact rejection uses both direct (where no PSF-
matching is performed) and PSF-matched warps, ho-
mogenized to a standard PSF of 1.8 arcseconds FWHM,
broadly consistent with the 1.7 arcsecond FWHM see-
ing threshold used in data screening. A sigma-clipped
mean of the PSF-matched warps serves as a static sky
model, against which individual warps are differenced
to identify significant positive and negative residuals.
Candidate artifact regions are classified as transient if
they appear in less than a small percentage of the total
number of exposures, with the threshold based on the
number of visits, IV, as follows:

e N =1 or 2: threshold = 0 (no clipping).
e N =3 or 4: threshold = 1.

o N =5: threshold = 2.

e N > b5: threshold =2+ 0.03N.

Identified transient regions are masked before coaddi-
tion, improving image quality and reducing contamina-
tion in derived catalogs.

4.5.2. Detection, Deblending and Measurement

After constructing coadded images, sources are de-
tected in each band, merged across bands, deblended,
and measured to generate the final object catalogs
(§3.2). For each coadd in all six bands, we per-
form source detection at a 5o detection threshold and
then adjust the background with a per-patch constant
(coadds are built from background-subtracted images,
but the deeper detection on coadds redefines what is
considered source versus background). Detections across
bands are merged in a fixed priority order, irzygu, to
form a union detection catalog, which serves as input to
deblending.

Deblending is performed using the Scarlet Lite algo-
rithm, which implements the same model as Scarlet (P.
Melchior et al. 2018), but operates on a single pixel grid.
This allows the use of analytic gradients, resulting in
greater computational speed and memory efficiency.

Object measurement is then performed on the de-
blended detection footprints in each band. Measure-
ments are conducted in three modes: independent per-
band measurements, forced measurements in each band,
and multiband measurements.

Most measurement algorithms operate through a
single-band plugin system, largely as originally de-
scribed in J. Bosch et al. (2018). The same plugins are
run separately for each object on a deblended image,
which uses the Scarlet model as a template to re-weight
the original noisy coadded pixel values. This effectively
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preserves the original image in regions where objects are
not blended, while dampening the noise elsewhere.

A reference band is chosen for each object based on de-
tection significance and measurement quality using the
same priority order as detection merging (irzygu) and
a second round of measurements is performed in forced
mode using the shape and position from the reference
band to ensure consistent colors (J. Bosch et al. 2018).

Measurement algorithm outputs include object fluxes,
centroids, and higher-order moments thereof like sizes
and shapes. A variety of flux measurements are pro-
vided, from aperture fluxes and forward modeling algo-
rithms.

Composite model (CModel) magnitudes (K. Abaza-

jlan et al. 2004; J. Bosch et al. 2018) are used to cal-

culate the extendedness parameter, which functions as
a star-galaxy classifier. Extendedness is a binary clas-
sifier that is set to 1 if the PSF model flux is less than
98.5% of the (free, not forced) CModel flux in a given
band. Additionally, the extendedness in the reference
band is provided as a separate column for convenience
as a multiband star-galaxy classification, and is recom-
mended generally but also specifically for objects with
low signal-to-noise ratio in some bands.

Gaussian-Aperture-and-PSF (Gaussian Aperture and
PSF (GAaP) K. Kuijken 2008; A. Kannawadi 2025)
fluxes are provided to ensure consistent galaxy colors
across bands. Sérsic model (J. L. Sérsic 1963; J. L. Sersic
1968) fits are run on all available bands simultaneously
(MultiProFit, D. S. Taranu 2025). The resulting Sérsic
model fluxes are provided as an alternative to CModel
and are intended to represent total galaxy fluxes. Like
CModel, the Sérsic model is a Gaussian mixture approx-
imation to a true Sérsic profile, convolved with a Gaus-
sian mixture approximation to the PSF. CModel mea-
surements use a double “shapelet” (A. Refregier 2003)
PSF with a single shared shape, while the Sérsic fits use
a double Gaussian with independent shape parameters
for each component. Sérsic model fits also include a free
centroid, with all other structural parameters shared
across all bands. That is, the intrinsic model has no
color gradients, but the convolved model may have color
gradients if the PSF parameters vary significantly be-
tween bands.

Further details on the performance of these algorithms
are found in §5.7.

4.6. Variability Measurement
4.6.1. Difference Imaging Analysis
Difference Image Analysis (DIA) uses the decorrelated

Alard & Lupton image differencing algorithm (D. J.
Reiss & R. H. Lupton 2016). We detected both pos-
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itive and negative DIASources at 5o in the difference
image. Sources with footprints containing both positive
and negative peaks due to offsets from the template po-
sition or blending were fit with a dipole centroid code,
, which simultaneously fits offset positive and negative
PSFs.

We filter a subset of DIASources that have pixel
flags characteristic of artifacts, non-astrophysical trail
lengths, and unphysically negative direct fluxes. We
performed a simple spatial association of DIASources
into DIAObjects with a one arcsecond matching radius.

The Machine Learning reliability model applied to
DP1 was developed with the aim to meet the latency
requirements for Rubin Alert Production when executed
on CPUs. Accordingly we developed a relatively simple
model: a Convolutional Neural Network with three con-
volutional layers, and two fully connected layers. The
convolutional layers have a 5 x 5 kernel size, with 16, 32,
and 64 filters, respectively. A max-pooling layer of size 2
is applied at the end of each convolutional layer, followed
by a dropout layer of 0.4 to reduce overfitting. The last
fully connected layers have sizes of 32 and 1. The ReLU
activation function is used for the convolutional layers
and the first fully connected layer, while a sigmoid func-
tion is used for the output layer to provide a probabilistic
interpretation. The cutouts are generated by extracting
postage stamps of 51 x 51 pixels centered on the detected
sources. The input data of the model consist of the tem-
plate, science, and difference image stacked to have an
array of shape (3, 51, 51). The model is implemented
using PyTorch (J. Ansel et al. 2024). The Binary Cross
Entropy loss function was used, along with the Adap-
tive Moment Estimation (Adam) optimizer with a fixed
learning rate of 1 x 10™4, weight decay of 3.6 x 10~2, and
a batch size of 128. The final model uses the weights
that achieved the best precision/purity for the test set.
Training was done on the SLAC Shared Scientific Data
Facility (S3DF) with an NVIDIA model L40S GPU.

The model was initially trained using simulated data
from the second DESC Data Challenge (DC2; (LSST
Dark Energy Science Collaboration (LSST DESC) et al.
2021)) plus randomly located injections of PSFs to in-
crease the number of real sources, for a total of 89,066
real sources. The same number of bogus sources were se-
lected at random from non-injected DIASources. Once
the LSSTComCam data were available, the model was
fine-tuned on a subset of the data containing 183,046
sources with PSF injections. On the LSSTComCam test
set, the model achieved an accuracy of 98.06%, purity
of 97.87%, and completeness of 98.27%. As discussed
in §5.8, the injections used to train this model version
do not capture all types of astrophysical variability, so
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performance on the test set will not be representative
for variable stars, comets, and other types of variable
objects.

4.6.2. Light Curves

To produce light curves, we perform multi-epoch
forced photometry on both the direct visit images and
the difference images. For light curves we recom-
mend the forced photometry on the difference images
(psDiffFlux on the ForcedSource Table), as it isolates
the variable component of the flux and avoids contam-
ination from static sources. In contrast, forced pho-
tometry on direct images includes flux from nearby or
blended static objects, and this contamination can vary
with seeing. Centroids used in the multi-epoch forced
photometry stage are taken either from object positions
measured on the coadds or from the DIAObjects (the
associated DIASources detected on difference images).

4.6.3. Solar System Processing

Solar system processing in DP1 consists of two key
components: the association of observations (sources)
with known solar system objects, and the discovery of
previously unknown objects by linking sets of tracklets’®.

To generate expected positions, ephemerides are com-
puted for all objects found in the Minor Planet Center
orbit catalog using the Sorcha survey simulation toolkit
(Merritt et al., in press)®. To enable fast lookup of ob-
jects potentially present in an observed visit, we use
the mpsky package (M. Juric 2025). In each image, the
closest DiaSource within 1 arcsecond of a known solar
system object’s predicted position is associated to that
object.

Solar system discovery uses the heliolinx package of
asteroid identification and linking tools (A. Heinze et al.
2023). The suite consists of the following tasks:

o Tracklet creation with make_tracklets
e Multi-night tracklet linking with heliolinc

o Linkage post processing (orbit fitting, outlier re-
jection, and de-duplication) with link_purify

The inputs to the heliolinx suite included all sources
detected in difference images produced by an early pro-
cessing of the LSSTComCam commissioning data, in-
cluding some that were later rejected as part of DP1
processing and hence are not part of DP1.

98 A tracklet is defined as two or more detections of a moving
object candidate taken in close succession in a single night.
99 Available at https://github.com/dirac-institute/sorcha
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About 10% of all commissioning visits targeted the
near-ecliptic field Rubin_SV_ 38 7 chosen to facilitate
asteroid discovery. Rubin_SV_ 38 7 produced the vast
majority of asteroid discoveries in DP1, as expected, but
a few were found in off-ecliptic fields as well.

Tracklet creation with make_tracklets used an up-
per limit angular velocity of 1.5 deg/day, faster than any
main belt asteroid and in the range of many Near-Earth
Object (NEO) discoveries. To minimize false tracklets
from fields observed multiple times per night, the mini-
mum tracklet length was set to three detections, and a
minimum on-sky motion of five arcseconds was required
for a valid tracklet.

The heart of the discovery pipeline is the heliolinc
task, which connects (“links”) tracklets belonging to the
same object over a series of nights. It employs the Heli-
oLinC3D algorithm (S. Eggl et al. 2020; A. Heinze et al.
2022), a refinement of the original HelioLinC algorithm
of M. J. Holman et al. (2018).

The heliolinc run tested each tracklet with 324 dif-
ferent hypotheses spanning heliocentric distances from
1.5 to 9.8 astronomical unit (au) and radial velocities
spanning the full range of possible bound orbits (ec-
centricity 0.0 to nearly 1.0). This range of distance
encompasses all main belt asteroids and Jupiter Tro-
jans, as well as many comets and Mars-crossers and
some NEOs. Smaller heliocentric distances were not
attempted here because nearby objects move rapidly
across the sky and hence were not likely to remain long
enough in an LSSTComCam field to be discovered. Can-
didate linkages, groups of tracklets whose propagated
orbits cluster within a radius of 1.33 x 102 AU at 1 AU,
are identified, then post-processed via link_purify to
yeild a final, non-overlapping set of high-confidence as-
teroid candidates, ranked by orbit-fit residuals and re-
lated metrics.

5. PERFORMANCE CHARACTERIZATION AND
KNOWN ISSUES

In this section, we provide an assessment of the DP1
data quality and known issues.

5.1. Sensor Anomalies and ISR

In addition to the known detector features identified
before LSSTComCam commissioning, most of which are
handled by the ISR processing (see §4.2.1), we discov-
ered a number of new types of anomalies in the DP1
data. Since no corrections are currently available for
these anomalies, they are masked and excluded from
downstream data products.
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5.1.1.

Vampire Pizels

“Vampire” pixels are visible on the images as a bright
defect surrounded by a region of depressed flux, as
though the defect is stealing charge from its neighboring
pixels. Figure 10 shows an example of a vampire pixel
near the center of R22 S11 on an r-band flat.

From studies on evenly illuminated images, vampires
appear to conserve charge. Unfortunately, no unique
optimum way exists to redistribute this stolen flux so,
following visual inspection, a defect mask was created
to exclude them from processing. We have found some
similar features on the ITL detectors on LSSTCam, and
will use the same approach to exclude them.
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0.982
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0.976
0.973
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0.966

0.963

0.959
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Figure 10. A large vampire pixel near the center of R22_ -
S11, as seen on the r-band flat. This clearly shows the central
hot ”vampire” pixels, surrounded by a region of depressed
signal, with a brighter ring surrounding that caused by the
local electric field effects. The charge contained in the central
pixels is incompletely shifted as the image is read, and that
charge leaks out into subsequent rows as they are shifted
through the remnant charge. The columns that contain the
hot pixels are masked as defects in all processing, as this
feature cannot be otherwise corrected.

5.1.2. Phosphorescence

Some regions of the LSSTComCam CCD raft were
seen to contain large numbers of bright defects. An ex-
ample is shown in Figure 11 in a g-band flat. On further
investigation, it appears that on some detectors a layer
of photoresist wax was incompletely removed from the
detector surface during production. As this wax is now
trapped below the surface coatings, there is no way to
physically clean these surfaces. If this wax responded
to all wavelengths equally, then it would likely result in
quantum efficiency dips, which might be removable dur-
ing flat correction. However, it appears that this wax is
slightly phosphorescent, with a decay time on the order
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of minutes, resulting in the brightness of these defects
being dependent on the illumination of prior exposures.
The worst of these regions were excluded with manual
masks.
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Figure 11. The top left corner of R22_S01 in the g-band
flat, showing the many small defect features that are caused
by the remnant photoresist wax. A single large defect box
masks this region from further analysis to prevent these fea-
tures from contaminating measurements.

5.1.3. Crosstalk

Crosstalk refers to unwanted signal interference be-
tween adjacent pixels or amplifiers. We use an aver-
age inter-amp crosstalk correction based on laboratory
measurements with LSSTCam. These average correc-
tions proved satisfactory, and so have been used as-is
for DP1 processing. There are, however, some residual
crosstalk features present post-correction, with a ten-
dency towards over-subtraction. Figure 12 shows an ex-
ample of a bright star with over-subtracted crosstalk
residuals visible on neighboring amplifiers to both sides
on exposure 2024120600239, detector R22_S02.

5.1.4. Bleed Trails

Bleed trails are produced when charge from saturated
pixels spills into adjacent pixels. Bleed trails were an-
ticipated on LSSTComCam sensors, but they appear in
more dramatic forms than had been expected. As a
bleed trail nears the serial register, it fans out into a
“trumpet” shaped feature. Although bright, these fea-
tures do not have consistently saturated pixels. In DP1
these “edge bleeds” were identified and masked.

Saturated sources can create a second type of bleed,
where the central bleed drops below the background
level. The depressed columns along these trails extend
across the entire readout column of the detector, cross-
ing the detector mid-line. We developed a model for
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Figure 12. An example of a bright star with over-sub-
tracted crosstalk residuals visible on neighboring amplifiers
to both sides (exposure 2024120600239, detector R22 S02).
The horizontal banding stretching from the center of the star
shows the interpolation pattern covering the saturated core
and the ITL edge bleed near the serial register.

these to identify which sources are sufficiently saturated
to result in such a trail, which is then masked. As this
kind of trail appears only on the ITL detectors, we've
named these features “ITL dips”. Figure 13 shows an
example of a bright star exhibiting the “ITL dip” phe-
nomenon on exposure: 2024121000503, detector: R22_ -
S21.
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Figure 13. A bright star showing the “ITL dip” phe-

nomenon, in which a dark trail extends out from the star
to the top and bottom edges of the detector (exposure:
2024121000503, detector: R22_S21).

5.2. PSF Models

To characterize PSF performance, we use adaptive
second moments (G. M. Bernstein & M. Jarvis 2002)
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Table 5. Observed mean values and comparison of model
residuals, across all visits and filters

Quantity Observed Piff 02 Piff O4
x107* x107*

(T) (pixel?) 11.366 & 0.003

(e) (—6.07 £0.05) x 1073

(e?) (—4.57 £0.05) x 1073

(e) (8.794 4+ 0.004) x 1072

(6T T) —4.040.2 —5.040.2

(se) 0.6+0.1 0.540.1

(6€2) 0.0+0.1 0.040.1

measured on PSF stars and on the PSF model using
the HSM implementation (C. Hirata & U. Seljak 2003;
R. Mandelbaum et al. 2005). All measurements are ex-
pressed in the pixel coordinate frame of each detector.
We characterize the performance of the PSF using the
classical trace of the second moment matrix 7, along
with the ellipticity parameters e! and e?. Measure-
ments on the observed PSF stars are are denoted as
Tpsr, ellz.SF, e%SF, while those from PSF models are de-
noted as Timodel, € e? We compare two PSF

model’ “model”
modeling approaches:

o Piff with second-order polynomial interpolation
(Piff 02), the pipeline’s default, and

o Piff with fourth-order polynomial interpolation
(Piff O4), which serves as the final DP1 PSF
model.

Table 5 summarizes each model’s ability to reconstruct
the mean T, e', and e? on LSSTComCam. Both models
exhibit a negative residual bias in the reconstructed PSF
size, with Piff O4 providing improved performance over
Piff O2.

An alternative approach to evaluating the perfor-
mance of the PSF model is to examine the average 6T /T,
where 0T is Tpsr - Tmodel, across visits, projected onto
focal-plane coordinates, as shown in Figure 14. Piff re-
veals strong spatial correlations in the residuals, includ-
ing a systematic offset consistent with the results pre-
sented in Table 5. The presence of these spatial struc-
tures motivated the adoption of fourth-order polynomial
interpolation in all bands except u-band. Although not
shown in Figure 14, residual patterns persist even with
third-order interpolation, indicating that it is insuffi-
cient to capture the complexity of the PSF variation.
Increasing the interpolation order to five would nomi-
nally reduce the residuals further, but the limited num-
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ber of stars available on some CCDs would not provide
adequate constraints for such a model, while the result-
ing improvement would likely be minimal. Preliminary
analysis of LSSTCam data in the laboratory at SLAC
National Accelerator Laboratory (SLAC) shows that the
ITL sensors exhibit the same pattern as I'TL sensors on
LSSTComCam.
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Figure 14. Average across all visits of §7/T for Piff O2 and
Piff O4 modeling on LSSTComCam. Averages are computed
using a 120x120 binning.

Another way to look at the PSF modeling quality is
via whisker plots of the PSF second and fourth moments
and their modeling residuals projected on a part of the
sky. In addition to the second moment, the spin-2 fourth
moments, e, are defined as:

etV = Myg — Mg

e§4) =2(Mz1 — Mis),
where M are the standardized higher moments as de-
fined in T. Zhang et al. (2023) measured on stars and
PSF models. Figure 15 shows the whisker plots of e, e(*)

(top rows), and de, de(®) in the Extended Chandra Deep
Field-South Survey (ECDFS) field. The direction of a
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whisker represents the orientation of the shape, while
the length represents the amplitude |e| or [e(*)|. We ob-
serve coherent patterns in both the PSF moments and
the residuals, the latter of which warrants further inves-
tigation if it persists in future data releases. »
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Figure 15. Whisker plots for the ECDFS field for e, e®
and de, e,

Figure 16 shows a plot of 0T/T versus stellar magni-
tude, which can reveal any dependencies between PSF
size and flux. We also repeat this analysis in color bins
to probe chromatic effects. Binning by color uncovers
a clear color dependence, as was also seen in DES (M.
Jarvis et al. 2021). The residual is consistent with Ta-
ble 5 and its cause is unknown. DP1 does not include the
color correction implemented in the DES Year 6 anal-
ysis, T. Schutt et al. (2025). This will be included in
processing of future data releases.
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Figure 16. Binned 67'/T as a function of magnitude across
all visits and filters and in bins of stellar colors.
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As noted in Rubin Observatory Science Pipelines De-
velopers (2025), two key Piff features were not used in
the DP1 processing. PSF color dependence was not im-
plemented, and, while Rubin software allows Piff to work
with sky coordinates (including WCS transformations),
it does not yet correct for sensor-induced astrometric
distortions such as tree rings (H. Y. Park et al. 2017).
Both features are planned for upcoming releases.

5.3. Astrometry

To characterize astrometric performance, we evaluate
both internal consistency and agreement with an exter-
nal reference. The primary measure of internal consis-
tency is the repeatability of position measurements for
the same object, defined as the RMS of the astrometric
distance distribution for stellar pairs having a specified
separation in arcminutes. We associate isolated point
sources across visits and compute the rms of their fitted
positions, rejecting any stars with another star within
2"”. Figure 17 shows the median per-tract rms astro-
metric error in RA for all isolated point sources, both
after the initial calibration and after the final calibra-
tion, which includes proper motion corrections. The re-
sults indicate that the astrometric solution is already
very good after the initial calibration. Global calibra-
tion yields only modest improvement, likely due to the
short time span of DP1 and the minimal distortions
in the LSSTComCam. In the main survey, the longer
time baseline and greater distortions near the LSSTCam
field edges will make global calibration more impactful.
An additional measure of internal consistency is the re-
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Figure 17. Mean per-tract astrometric repeatability of

measurements of isolated point sources in RA in visits across
all bands.

peatability of separations between objects at a given dis-
tance. To compute this, we identify pairs of objects that
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are separated by a specified distance and measure their
precise separation during each visit in which both ob-
jects are observed. The scatter in these separation mea-
surements provides an indication of the internal consis-
tency of the astrometric model. Figure 18 shows the
median separation for pairs of objects separated by ap-
proximately 5 arcminutes, computed per tract after the
final calibration. These values are already approaching
the design requirement of 10 mas.

14 == AM1 median = 11.3 mas |

12
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Number of tracts

©
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Figure 18. Median per-tract repeatability in separations
between isolated point sources 5 arcmin apart in visits across
all bands.

To assess external consistency, we consider the median
separation between sources not included in the astromet-
ric fit and associated objects from a reference catalog.
For this, we use the Gaia DR3 catalog, with the object
positions shifted to the observation epoch using the Gaia
proper motion parameters. Figure 19 shows the median
separation for each visit in the r-band in tract 4849 in
the ECDFS fields (Table 3). The calculated values are
almost all within 5 mas, well below the design require-
ment of 50 mas for the main survey. By examining the
astrometric residuals, we can assess whether there are
distortions not accounted for by the astrometric model.
In some cases, residuals from a single visit exhibit behav-
ior consistent with atmospheric turbulence, as shown in
Figure 20, which is characterized by a curl-free gradient
field in the two-point correlation function of the residu-
als (E-mode), P. F. Léget et al. (2021) and W. F. Fortino
et al. (2021). However, as seen in Figure 21, the resid-
uals in many visits also have correlation functions with
a non-negligible divergence-free B-mode, indicating that
some of the remaining residuals are due to unmodeled
instrumental effects, such as rotations between visits.

We can see unmodeled camera distortions by stacking
the astrometric residuals over many visits as a function
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Figure 19. Median absolute offset for all visits in r-band in tract 4849 in the ECDFS field. The offset is the difference between
the positions of isolated point sources that were reserved from the astrometric fit and matched objects from the Gaia DR3
catalog.
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Figure 20. Astrometric residuals in u (left panel) and v (center panel) directions with the E (blue) and B (orange) modes
of the two-point correlation function (right panel) seen in visit 2024120200359 in tract 2393 in u band. The residuals show
a wave-like pattern characteristic of atmospheric turbulence, and there is significant E-mode and negligible B-mode in the
correlation function.
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Figure 21. Astrometric residuals in u (left panel) and v (center panel) directions, with the E (blue) and B (orange) modes
of the two-point correlation function (right panel) seen in visit 2024120700527 in tract 2393 in w band. There are coherent
residuals, but without the wave-like pattern seen in Figure 20, and the correlation function has significant values for both E
and B-modes.

of the focal plane position. Figure 22 shows the median 22 residuals in z and y directions for 1792 visits. Spatial
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Figure 22. Median astrometric residuals as a function of
focal plane position, shown in the left panel for the x direc-
tion and in the right panel for the y direction, for all nine
LSSTComCam CCDs independently. The range of the color
scale is £+ 0.01 pixels, corresponding to 2 mas, showing that
the effect is small.

structures are evident at the CCD level, as well as at
the mid-line break, the discontinuity between the two
rows of amplifiers, in the y-direction residuals. Further
stacking all the detectors makes certain effects particu-
larly clear. Figure 23 shows distortions very similar to
those measured for an LSSTCam ITL sensor in a labo-
ratory setting in J. H. Esteves et al. (2023).

5.4. Differential Chromatic Refraction

Differential Chromatic Refraction (DCR) occurs when
light passes through Earth’s atmosphere, refracting
more for shorter wavelengths, which causes blue light
to appear shifted closer to the zenith. This wavelength-
dependent effect results in the smearing of point sources
along the zenith direction, specifically parallel to the
parallactic angle. The DCR effect is observable in
LSSTComCam data, particularly in the angular offset
versus g —¢ band magnitude difference plots, as shown in
Figure 24. These plots contain 228 visits chosen to max-
imize the range of observed airmass. When looking at
data perpendicular to the parallactic angle, sources ex-
hibit no discernible DCR effect, which is expected, and
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Figure 23. Median residuals as a function of pixel position,
shown in the left panel for the x direction and in the right
panel for the y direction. These residuals are aggregated
across all nine CCDs that comprise the central LSSTCom-
Cam raft. The range of the color scale is + 0.01 pixels,
corresponding to 2 mas, showing that the effect is small.

form a clear vertical distribution on the two-dimensional
density plots in Figure 24.

In contrast, sources aligned with the parallactic angle
exhibit a tilted, linear distribution, clearly demonstrat-
ing that the relationship between angular offset and the
g — i band magnitude difference, thereby providing a vi-
sual indication of the DCR effect. The DCR effect will
be addressed in future releases.

5.5. Stellar Photometry

The photometric repeatability for isolated bright un-
resolved sources following the FGCM fits was excellent.
For the 10% of unresolved sources withheld from the fit
and having signal-to-noise ratios greater than 100, the
photometric repeatability after applying chromatic cor-
rection was 7.1, 5.4, 5.4, 5.1, 5.9, and 6.5 mmag in the
ugrizy bands respectively, across all fields. After ac-
counting for photometric noise, the intrinsic photomet-
ric repeatability was approximately 4.8, 2.7, 1.7, 1.0, 2.0,
and 1.1 mmag in ugrizy. The DP1 processing does not
yet include chromatic corrections in the final photome-
try. In this case the delivered photometric repeatability
was 3—8 mmag for grizy.
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Figure 24. Visualization of Differential Chromatic Refrac-
tion (DCR) observed in the LSSTComCam commissioning
campaign. The g — i color is computed for every source in
the reference catalog that is matched to a direct source in
the science image, and the binned density for the full survey
is plotted against the angular offset between the reference
and detected positions. The angular offset is projected along
coordinates parallel and perpendicular to the parallactic an-
gle of the observation, and shows a characteristic correlation
along the parallel axis with no correlation along the perpen-
dicular axis. The orange vertical dashed line indicates the
expected g — i magnitude distribution at zero angular offset.

In Figure 25, we show the stellar loci for ugriz for un-
resolved sources in the DP1 Object table (§3.2). These
unresolved sources were selected using the extendedness
parameter (§3.2) in the Object catalog. This parame-
ter is assigned a value of 0 (unresolved) or 1 (resolved)
in each band based on the difference between the PSF
and CModel magnitudes. The extendedness is set to 1
when this magnitude difference exceeds 0.016 mag, as
the PSF flux for extended sources is biased low relative
to the CModel flux. This method has been previously
employed by the SDSS pipelines, and its statistical prop-
erties, including the optimal combination of information
from different bands and repeated measurements, are
discussed in C. T. Slater et al. (2020).

Figure 26 illustrates the behavior of the extendness
parameter. Its behavior in the g and r bands is simi-
lar, with unresolved sources scattered around the ver-
tical line centered on zero. The width of the distri-
bution increases towards fainter magnitudes. Resolved
sources are found to the right and the dashed lines in the
top panels show the adopted “star-galaxy” separation
boundary. The morphology of the two color-magnitude
diagrams in the bottom panels suggest that the unre-
solved sample suffers from increasing contamination by
galaxies for r > 24. This behavior is consistent with
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simulation-based predictions from C. T. Slater et al.
(2020).

5.6. Detection Completeness on Coadds

We characterize completeness by injecting synthetic
sources into coadded images, and by comparing source
detections to external catalogs. In both cases, we use a
greedy, probabilistic matching algorithm that matches
reference objects, in order of descending brightness, to
the most likely target within a 0.5"” radius.

We inject sources in 12 of the patches of the ECDFS
region with the deepest coverage. The input catalog con-
tains stars and galaxies from part of the Data Challenge
2 (DC2) simulations (LSST Dark Energy Science Col-
laboration (LSST DESC) et al. 2021), where the galaxies
consist of an exponential disk and de Vaucouleurs (G.
de Vaucouleurs 1948, 1953) bulge. To avoid deblender
failures from excessive increases in object density, stars
with a total flux (i.e., summed across all six bands)
brighter than 17.5 mag are excluded, as are galaxies
whose total flux is brighter than 15 mag or fainter than
26.5 mag. Half of the remaining objects are selected for
injection. Afterwards, individual bulge and disk com-
ponents fainter than 29 mag are also excluded, both
for computational expediency and because their struc-
tural properties are less likely to be representative of
real galaxies.

Figure 27 shows completeness as a function of mag-
nitude for these injected objects in the ECDFS field.
These completeness estimates are comparable to results
from matching external catalogs. Matching to the Hub-
ble Legacy Field catalog (G. Illingworth et al. 2016;
K. E. Whitaker et al. 2019) reaches 50% completeness
at F775W = 26.13, or about i = 25.83 from differences
in matched object magnitudes. Similarly, completeness
drops below 90% at VIS = 23.80 from matching to
Euclid Q1 (Euclid Collaboration et al. 2025) objects,
equivalent to roughly ¢+ = 23.5. The Euclid imaging is of
comparable or shallower depth, so magnitude limits at
lower completeness percentages than 90% are unreliable,
whereas the HST images cover too small and irregular of
an area to accurately characterize 80-90% completeness
limits.

At the 80% completeness limit, nearly 20% of objects,
primarily injected galaxies, are incorrectly classified as
stars based on their reference band extendedness. Sim-
ilarly, the fraction of correctly classified injected stars
drops to about 50% at i = 23.8 (corresponding to 90%
completeness).

This analysis has several caveats. The selection of
objects for matching in any catalog is not trivial. Some
fraction of the detections are spurious, particularly close
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Figure 25. Examples of stellar loci for unresolved sources from the DP1 dataset. From left to right: gri stellar locus containing
63,236 stars with signal-to-noise ratio > 200 in the ¢ band; iz stellar locus containing 46,760 stars with signal-to-noise ratio >
200 in the ¢ band ugr stellar locus containing 12,779 stars with signal-to-noise ratio > 50 in the u band.

to bright stars and their diffraction spikes. Addition-
ally, some objects lie in masked regions of one survey
but not another, which has not been accounted for. For
injected source matching, the reference catalog does not
include real on-sky objects. Based on prior analyses of
the DC2 simulations, purity is generally greater than
completeness at any given magnitude. Similarly, for
bright (¢ < 23) objects classified as stars by reference
band extendedness, < 5% are either unmatched to a Eu-
clid or HST object, or misclassified - that is, selecting on
extendedness alone yields a fairly pure but incomplete
sample of stars. We expect to remedy some of these
shortcomings in future releases.

5.7. Model Flux and Shape Measurement

Figure 28 shows i-band magnitude residuals for
CModel and Sérsic measurements using the matched in-
jected galaxies described in §5.6. Similar behavior is
seen in other bands. Sérsic fluxes show reduced scat-
ter for galaxies with i < 22.5, though CModel fluxes
are less biased, with median residuals closer to zero and
less magnitude-dependent. For fainter objects, Sérsic
fluxes are more biased and less accurate. The magni-
tude of this bias is considerably larger than previously
seen in simulated data and is being investigated. Aper-
ture fluxes - including Kron and GAaP - are not shown
as they are not corrected to yield total fluxes. The cor-
rection for Kron fluxes can be derived from the Sérsic
index (A. W. Graham & S. P. Driver 2005), but this
correction is not provided in object tables.

Figure 29 shows g — i color residuals versus r-band
magnitude for the same sample of galaxies as Figure 28.
For this and most other colors, GAaP (with a 1” aper-
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ture) and Sérsic colors both yield lower scatter; however,
the CModel colors have the smallest bias. Curiously,
the GAaP bias appears to be magnitude-dependent,
whereas the Sérsic bias remains stable from 19 < r < 26.
Any of these color measurements are suitable for use
for deriving quantities like photometric redshifts, stellar
population parameters, etc.

In addition to photometry, some algorithms include
measurements of structural parameters like size, ellip-
ticity, and Sérsic index. One particular known issue is
that many (truly) faint objects have significantly overes-
timated sizes and fluxes. This was also seen in the Dark
Energy Survey (K. Bechtol et al. 2025), who dubbed
such objects “super-spreaders”. These super-spreaders
contribute significantly to overestimated fluxes at the
faint end (see e.g. Figure 28), and are particularly prob-
lematic for the Kron algorithm (R. G. Kron 1980), which
should only be used with caution.

As mentioned in §4.5, the Sérsic fits include a free
centroid, which is initialized from the fiducial centroid
of the object. Preliminary analyses of matched injected
objects suggest that the Sérsic model galaxy astrom-
etry residuals are somewhat smaller than for the stan-
dard centroids used in other measurements, and so users
of the Sérsic photometry should also use these centroid
values. One caveat is that for faint objects and/or in
crowded regions with unreliable deblending, free cen-
troids can drift significantly and potentially towards
other objects, so objects with large differences between
the fiducial and Sérsic astrometry should be discarded
or used with caution.

Sérsic model parameter uncertainties are estimated
by computing and inverting the Hessian matrix with
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Figure 26. The top two panels shows the difference between the PSF and CModel magnitudes as a function of CModel
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the r vs. g — r color-magnitude diagrams for 14,701 unresolved (left) and 163,666 resolved (right) sources. Note the unresolved
sample suffers from increasing contamination by galaxies for r > 24.

the best-fit parameter values, after replacing the pixel
data (but not uncertainties) by the best-fit model values.
Currently, only the on-diagonal dispersion term (square
root of the variance) is provided as an error estimate for
each parameter. Future releases may provide more off-
diagonal terms of the covariance matrix - particularly
for the structural parameters, which are known to be
correlated.

A major outstanding issue is that many parameter
uncertainties - including but not limited to those for
fluxes - are underestimated. This is at least partly (but
not wholly) due to the fact that coaddition introduces
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covariance between pixels, which is not captured in per-
pixel variances.

The degree to which uncertainties are underestimated
can depend on the parameter in question and on the
brightness of the object. In plots of uncertainty-scaled
residuals, the ideal behavior is for the median (i.e. the
bias) to lie close to zero, and for the £1o lines to lie at
41, without any dependence on magnitude. Figure 30
shows that flux and color uncertainties for PSF model
magnitudes of injected stars are both underestimated,
but by a factor of approximately 1.7 — 2 that is not very
sensitive to SNR. This holds for astrometric/centroid
parameters as well.
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Magnitude) for DC2-based injected objects into a portion
of the ECDFS field. The “Incorrect Class” line shows the
proportion of objects that are matched but classified incor-
rectly by their reference-band extendedness, i.e. stars with
extendedness of 1 or galaxies with extendedness of 0 in the
reference band.

In turn, Figure 31 shows that CModel color uncertain-
ties of galaxies are underestimated by a similar factor at
the faint end, but with appreciable scaling with mag-
nitude (and thereby SNR). Flux error underestimation
is both larger than for colors and scales more strongly
with SNR. This indicates that systematic effects domi-
nate the errors in fluxes, particularly for bright galaxies.
This is also at least partly but not wholly due to so-
called model inadequacy - that is, the fact that galaxy
models, parameteric or otherwise, are insufficiently com-
plex to capture the structure of real galaxies.

Figure 32 shows that Sérsic model fluxes and colors
have similar behavior as CModel, but with a greater
degree of overestimation. This may be partly due to the
fact that Sérsic parameter uncertainties are estimated
along with the free centroid and structural (shape and
Sérsic index) parameters, whereas the forced CModel
fluxes and errors are derived from linear flux fits with a
fixed shape and centroid.

Efforts are underway to investigate and quantify the
origin of uncertainty underestimates and future releases
will, at the least, provide recommendations for mitiga-
tions.

5.8. Difference Imaging Purity

We assessed the performance of image differencing us-
ing human vetting and source injection (§5.9). Members
of the DP1 team labeled more than 9500 DIASource im-
age triplets consisting of cutouts from the science, tem-
plate, and difference images. We classified these into
various real and artifact categories. The raw artifact
to real ratio without filtering was roughly 9:1. Bright
stars are the main source of artifacts. Correlated noise,
primarily in v and g bands, also leads to spurious detec-
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tions near the flux threshold. We expect to be able to
mitigate these effects for LSSTCam.

Applying a reliability threshold improves the purity of
transients but not variable stars; technical limitations at
the time of model training prevented injection of vari-
able stars into the synthetic training set. Reliability
models, described in §4.6.1, for LSSTCam data will be
trained on a wider range of input data.

5.9. Difference Imaging Detection Completeness

We assess the performance of our difference imaging
pipeline using synthetic source injection on the science
images prior to differencing. We construct a catalog of
injected sources by joining two different samples of point
sources, a set of hosted sources to emulate transients in
galaxies and second set of hostless sources. The hosts
are selected from the pipeline source catalog that is pro-
duced upstream by imposing a cut on their extendedness
measurement and selecting Ny = min(100, N x 0.05) of
the N available sources per detector. For each host we
pick a random position angle and radius using its light
profile shape to decide where to place the source, and
also a random value of brightness for the injected source,
with magnitudes higher than the host source.

The hostless sources instead have random positions
in the CCD focal plane, and magnitudes chosen from a
random uniform distribution with 20 > m > my;, + 1,
where my;,,, is the limiting magnitude of the image. We
used the LSST source_injection package'’’ to include
these sources in our test images. We performed a coor-
dinate cross-match task, with a threshold of 05 to find
which of these sources were detected and which were
lost, enabling the calculation of a set of performance
metrics.

In Figure 33 we show the detection completeness as
a function of the SNR, for sources in the ECDFS field,
for filters griz. We observe a completeness > 95% for
sources with SNR> 6, with mean completeness ~ 99%
and standard deviation of ~ 0.7%. In Figure 34 we
show the distribution of the residuals of the recovered
sky coordinates for the detected synthetic sources. The
marginal distributions are both centered at zero, and
for sources of SNR > 20 the residuals are compatible
with normal distributions N(uz = 0,02 = (07.02)?).
In Figure 35 we show photometry results for our de-
tected synthetic sources in the ¢ filter, using PSF pho-
tometry on the difference images. We include both the
magnitude residuals as well as the flux pulls, defined
as fpsr — frrue)/0fpsr for PSF flux fpsp and error

100 https://pipelines.lsst.io/modules/lsst.source.injection /index.
html
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(a) i-band magnitude residuals for CModel measurements
of injected galaxies.

(b) ¢-band magnitude residuals for Sérsic model measure-
ments of injected galaxies.

Figure 28. i-band magnitude residuals for matched injected DC2 galaxies with the CModel and Sérsic algorithms in a portion
of the ECDFS region, including the median and scatter thereof. The black line is the median.
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measurements of injected galaxies.

Figure 29. g —i color residuals versus true r-band magnitude for matched injected DC2 galaxies with the CModel, GAaP and

Sérsic algorithms in a portion of the ECDFS region.

Otpsr, as a function of the true magnitude of the syn-
thetic sources, including the running median and me-
dian absolute deviation (MAD) for the whole brightness
range. We also include the true magnitude distribution
as well as the detection completeness on the top panel,
and for reference the 90% and 50% completeness mag-
nitude values in vertical lines. On the right panels we
include the marginal distribution for sources brighter
than mag < 22.5, splitting the data into hosted and
hostless, as well as the robust mean and standard devia-
tion. From this figure we can see that our flux measure-
ments are accurate within a wide range of magnitudes,
for both hosted and hostless synthetic sources. We find
that the median offset is below 0.002 mag for true mag-
nitudes below 21, and with a maximum o7 4p scatter of
about 0.02 mag in this range. For true m; < 22.5, the
robust running median PSF magnitudes residuals are
< 0.02 mag, and when splitting into hosted and hostless
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both robust median are well below 0.01, and robust o,
i.e. oprap are also well below 0.05. For all sources with
m; < 21.5 the running median is always | (J) | < 0.1, and
MAD o5 < 1. Extending to sources with m; < 22.5 then
hostless sources have a robust mean pull below 0.02,
with a robust standard deviation < 1.15, while these
parameters increase to 0.2 and 1.2 for hosted sources,
suggesting that we might have contamination from host
background sources potentially biasing our fluxes.

5.10. Solar System
5.10.1. Asteroid Linking Performance

The evaluation of asteroid linking performance in DP1
focused on demonstrating discovery capability. The so-
lar system discovery pipeline produced 269,581 track-
lets, 5,691 linkages, and 281 post-processed candidates.

As described in §4.6.3, post-processing of the heli-
olinc output with link_purify produced a final set of
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(b) g — i color uncertainty-scaled residuals for PSF model
measurements of injected stars.

Figure 30. Color and flux uncertainty-scaled residuals for matched injected DC2 stars’ PSF model measurements in a portion

of the ECDFS region.
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Figure 31. Color and flux uncertainty-scaled residuals for matched injected DC2 galaxies’ CModel measurements in a portion

of the ECDFS region.

281 candidate linkages, ranked with the most promising
first. We then used find_orb (B. Gray 2025) to derive
orbit fits for each candidate, sorting the resulting list by
x_dof?, a measure of fit quality. A conservative man-
ual investigation of these candidates yielded a curated
list of 93 probable new asteroid discoveries. Manual
inspection of the linkages indicated that those ranked
0-137 corresponded to unique real asteroids; ranks 138—
200 contained additional real objects intermixed with
some spurious linkages; and ranks higher than 200 were
essentially all spurious. This analysis indicates that it
will be possible to identify cuts on quality metrics such
as x? to define discovery candidate samples with high
purity; determining the exact quantitative cut values re-
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quires more data with LSSTCam. We next removed all
observations matched to known asteroids (using Minor
Planet Center (MPC)’s MPChecker service), reducing
the number of candidates to 97. Of these, four had
strong astrometric and/or photometric outliers, likely
due to self-subtraction in difference images due to the
unavoidable limitations of template generation from the
limited quantity of data available from LSSTComCam.
We suspect these four linkages do correspond to real ob-
jects, but have chosen to discard them out of an abun-
dance of caution. The remaining 93 were submitted to
the Minor Planet Center and accepted as discoveries,
demonstrating the LSST pipelines are able to success-
fully discover new solar system objects.
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(a) i-band flux uncertainty-scaled residuals for Sérsic
model measurements of injected galaxies.

(b) g—i color uncertainty-scaled residuals for Sérsic model
measurements of injected galaxies.

Figure 32. Color and flux uncertainty-scaled residuals for matched injected DC2 galaxies’ Sérsic measurements in a portion of

the ECDFS region.
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Figure 33. The difference image detection completeness for
injected sources in the ECDFS field, for filters griz, as a func-
tion of the estimated signal to noise ratio SNR. This com-
pleteness is the ratio between the found fake sources (shaded
histogram) and all the sources (solid line). The horizontal
dashed line represents where the 50% completeness level is
reached, at approximately SNR ~ 5.07.

5.10.2. Asteroid Association Performance

During the Solar System association step, 5988 Di-
aSources were linked to 431 unique Solar System ob-
jects, These include 3,934 DiaSources with 338 previ-
ously known objects cataloged by the MPC, and 2,054
DiaSources with the 93 newly-discovered objects. An
additional 143 detections of these newly discovered ob-
jects were also recovered. These detections were not
initially identified by the discovery pipelines, as they
did not meet the required criteria for tracklet formation,
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Figure 34. Coordinate residuals for detected synthetic
sources in difference images, between recovered and true po-
sition of the sources in the ECDFS field. In the top and
right panels we include the distribution of these offsets, for
all sources as well as for sources with SNR> 20. These high
SNR sources show gaussian coordinate residual distributions
with 0 = 0702 (black solid lines). The circle reflects the
matching radius of 0”5.

specifically the minimum number of detections and/or
the maximum allowed time span between observations.

The astrometric residuals of known asteroid associa-
tions are shown in Figure 36. The astrometric precision
for solar system sources is excellent, with the majority
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Figure 35. Magnitude residuals and flux pulls for i-band
PSF photometry on difference images for ECDFS field in
i for detected injected sources. Top panel: Distribution of
true magnitudes for injected sources (blue), and split into
hostless (black dash) and hosted (orange) sources, with de-
tection completeness as a function of true magnitude (gray
line). Vertical dashed lines indicate the 90% and 50% com-
pleteness magnitude limits. Center left panel: 2D hexbin
plot of PSF magnitude residuals (measured minus true) ver-
sus true magnitude for detected sources, with running me-
dian (solid black) and oarap (dashed black) overlaid. Cen-
ter right panel: Marginalized distributions of PSF magnitude
residuals for hostless (blue) and hosted (orange) sources with
true magnitude m; < 22.5, annotated with robust mean and
standard deviation. Bottom left panel: 2D hexbin plot of
PSF flux pulls versus true magnitude for detected sources,
with running median (solid black) and oaap (dashed black)
overlaid. Bottom right panel: Marginalized distributions of
PSF flux pulls for hostless (blue) and hosted (orange) sources
with true magnitude m; < 22.5, annotated with robust mean
and standard deviation.
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Figure 36. Astrometric residuals between expected and
observed positions of Solar System Objects in DP1. The me-
dian residuals are (0’001 and —0”016 in R.A./Dec direction,
with standard deviations of 0.”19 and 0.”10, respectively.
No detectable systematic offset from zero indicates there are
no major errors in either timing or astrometry delivered by
the Rubin system. The wider scatter in the RA direction
is due to objects whose measured orbital elements are less
well constrained, translating to larger along-track positional
errors in the predicted positions.

of objects detected within 0”1 of their expected posi-
tions. Taking the signed median residuals to search for
biases, we find that previously-known objects have mean
residuals of 07001 and —0”016 in the RA and Dec direc-
tions respectively, while newly-discovered objects have
mean residuals of —07035 and —0”/010 in the RA and
Dec directions, respectively. These mean residuals are
small enough to eliminate the possibility of a timing off-
set greater than the second-scale shutter motion, which
is consistent with the timing studies presented in Sec-
tion 2.2.2.

5.11. Crowded Fields

Among the seven Rubin DP1 target fields, two stand
out for their severe stellar crowding: the globular cluster
47 Tucanae (47_Tuc) and the Fornax dwarf spheroidal
galaxy (Fornax dSph). These fields were selected in part
to stress-test the LSST Science Pipelines under high-
density conditions. While both exhibit high stellar den-
sities, the nature and spatial extent of the crowding dif-
fer significantly.

47 Tuc presents extreme crowding across much of the
field, encompassing its dense core and the eastern re-
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gions influenced by the Small Magellanic Cloud (SMC).
This pervasive crowding leads to persistent challenges
for deblending and reliable source detection, exposing
field-wide limitations in the current pipeline perfor-
mance (Y. Choi et al. 2025). In contrast, Fornax dSph
shows significant crowding only in its central region,
with outer areas remaining well resolved and easier to
process.

In both 47Tuc and Fornax, extreme crowding led
to the deblending step being skipped frequently when
memory or runtime limits were exceeded, typically due
to an excessive number of peaks, or large parent foot-
prints. However, the impact of these limitations dif-
fered: in 47 Tuc, deblending was often skipped across the
entire field, resulting in large gaps and substantially re-
duced completeness. In Fornax, these issues were largely
confined to the central region, with much better recov-
ery in the outskirts. This contrast highlights how the
pipeline’s limitations depend on the spatial extent of
high-density regions: 47 Tuc exposed systematic, field-
wide challenges, whereas Fornax revealed more localized,
density-driven limits.

T. M. Wainer et al. (2025) explored the Rubin DP1
DiaObject catalog (§3.2) in the 47 Tuc field, which con-
tains sources detected in difference images. Because
forced photometry is performed at these positions across
all single-epoch images, this dataset bypasses the coadd-
based detection and deblending stages that often fail
in crowded regions. By computing the median of the
forced photometry for each DiaObject across available
visits, they recovered approximately three times more
candidate cluster members than found in the standard
Object table (Y. Choi et al. 2025). This result un-
derscores the value of difference-imaging—based catalogs
for probing dense stellar regions inaccessible to standard
coadd processing in DP1.

Although the DP1 pipeline was not optimized for
crowded-field photometry, these early studies of 47 Tuc
and Fornax provide critical benchmarks. They highlight
both the limitations and opportunities for science with
Rubin data in crowded environments, and they inform
future pipeline development aimed at robust source re-
covery in complex stellar fields.

6. RUBIN SCIENCE PLATFORM

The RSP (M. Jurié¢ et al. 2019) is a powerful, cloud-
based environment for scientific research and analysis
of petascale-scale astronomical survey data. It serves
as the primary interface for scientists to access, visual-
ize, and conduct next-to-the-data analysis of Rubin and
LSST data. The RSP is designed around a “bring the
compute to the data” principle, eliminating the need for
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users to download massive datasets. Although DP1 is
much smaller in size (3.5 TB) than many current sur-
vey datasets, future LSST datasets will be far larger and
more complex, making it crucial to co-locate data and
analysis for effective scientific discovery.

The RSP provides users with access to data and
services through three distinct user-facing Aspects: a
Portal, which facilitates interactive exploration of the
data; a JupyterLab-based Notebook environment for
data analysis using Python; and an extensive set of
Application Programming Interfaces (APIs) that enable
programmatic access to both data and services. The
three Aspects are designed to be fully integrated, en-
abling seamless workflows across the RSP. The data
products described in §3 are accessible via all three
Aspects, and the system facilitates operations such as
starting a query in one Aspect and retrieving its results
in another. Figure 37 shows the Rubin Science Platform
landing page in the Google cloud.

VERA C.RUBIN Portal Notebooks APIs. Documentation Support Community Login

iy - : gﬂ)m Science Platform

j Portal i Notebooks APIs

Discover data in the browser Process and analyze LSST data with

Jupyter notebooks in the cloud

a8

Learn more about notebooks.

Learn how to programatically access data
with Virtual Observatory interfaces

\ X

Learn more about the portal

Figure 37. The Rubin Science Platform landing page at
data.lsst.io showing the three user-facing Aspects as well as
links to documentation and support information.

The RSP is supported by a number of back-end ser-
vices, including databases, files, and batch comput-
ing. Support for collaborative work through shared
workspaces is also included in the RSP.

A preview of the RSP was launched on Google Cloud
in 2022, operating under a shared-risk model to support
Data Preview 0 (W. O’Mullane et al. 2024a). This al-
lowed the community to test the platform, begin prepa-
rations for science, and provide valuable feedback to in-
form ongoing development. It was the first time an as-
tronomical research environment was hosted in a cloud
environment. The DP1 release brings major updates to
RSP services, enhancing scientific analysis capabilities.
The RSP remains under active development, with incre-
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mental improvements being rolled out as they mature.
During the Rubin Early Science Phase, the RSP will
continue to operate under a shared-risk model. This
section outlines the RSP functionality available at the
time of the DP1 release and provides an overview of
planned future capabilities.

6.1. Rubin Data Access Center

The Rubin US Data Access Center (US DAC) utilizes
a novel hybrid on-premises-cloud architecture, which
combines on-premises infrastructure at the USDF at
SLAC with flexible and scalable resources in the Google
cloud. This architecture has been deployed and tested
using the larger simulated data set of DP0.2 (W.
O’Mullane et al. 2024b).

In this hybrid model, user-facing services are deployed
in the cloud to support dynamic scaling in response to
user demand and to simplify the provisioning and man-
agement of large numbers of science user accounts. The
majority of the static data products described in §3 are
stored on-premises at the USDF to benefit from cost-
effective mass storage and close integration with Ru-
bin data processing infrastructure, also located at the
USDF. For imaging data, the Data Butler (§6.2.2) pro-
vides the interface between the cloud-based users and
data services, and the on-premises data. For catalog
data, a cloud-based TAP client (§6.2.1) submits queries
to the on-premises Qserv database cluster (§6.5) and re-
trieves the results. In the initial DP1 deployment, cat-
alog data is hosted at the USDF while image data is
stored in the cloud. The full hybrid model will be rolled
out and further tested following the release of DP1.

The RSP features a single-sign-on authentication and
authorization system to provide secure access for Ru-
bin data rights holders (R. Blum & the Rubin Opera-
tions Team 2020).

6.2. API Aspect

The API Aspect provides a comprehensive set of user-
facing interfaces for programmatic access to the DP1
data products, through both IVOA-compliant services
and the Rubin Data Butler. IVOA services enable stan-
dard queries and integration with existing tools, while
the Butler facilitates advanced data processing within
the LSST Science Pipelines.

At the time of the DP1 release, some IVOA ser-
vices are unavailable, and certain data products are
only accessible via the Butler. This section provides
an overview of the available IVOA services and Butler
access.
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6.2.1. IVOA Services

Rubin has adopted a Virtual Observatory (VO)-first
design philosophy, prioritizing compliance with IVOA
standard interfaces to foster interoperability, standard-
ization, and collaboration. In cases where standardized
protocols have yet to be established, additional services
have been introduced to complement these efforts. This
approach ensures that the RSP can be seamlessly inte-
grated with community-standard tools such as Tool for
OPerations on Catalogues And Tables (TOPCAT) (M.
Taylor 2011) and Aladin (F. Bonnarel et al. 2000; T.
Boch & P. Fernique 2014; M. Baumann et al. 2022), as
well as libraries such as PyVO (M. Graham et al. 2014).

The user-facing APIs are also used internally within
the RSP, creating a unified design that ensures consis-
tent and reproducible workflows across all three Aspects.
This reduces code duplication, simplifies maintenance,
and ensures all users, both internal and external, access
data in the same way. For example, an Astronomical
Data Query Language (IVOA standard) (ADQL) query
on the Object catalog via TAP yields identical results
whether run from the Portal, Notebook, or an external
client.

The following IVOA services are available at the time
of the DP1 release:

o Table Access Protocol (TAP) Service: A
TAP service (P. Dowler et al. 2019) enables queries
of catalog data via the IVOA-standard ADQL, a
dialect of SQL92 with spherical geometry exten-
sions. The main TAP service for DP1 runs on the
Rubin-developed Qserv database (§ 6.5), which
hosts the core science tables described in §3.2, as
well as the Visit database. It also provides image
metadata in the IVOA ObsCore format via the
standard ivoa.0bsCore table, making it an “Ob-
STAP” service (ObsTAP; M. Louys et al. 2017).
The TAP service is based on the Canadian As-
tronomy Data Centre (CADC)’s open-source Java
TAP implementation'®!, modified for the exact
query language accepted by Qserv. It currently
supports a large subset of ADQL, with limitations
documented in the data release materials (see §7.1)
and exposed via the TAP capabilities endpoint
where possible.

The TAP service provides metadata annotations
consistent with the standard, including table and
column descriptions, indications of foreign-key re-
lationships between tables, and column metadata

101 https://github.com/opencadc/tap
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such as units and IVOA Unified Content Descrip-
tors (UCDs).

e Image Access Services: Rubin image access
services are compliant with IVOA SIAv2 (Sim-
ple Image Access Protocol, version 2; T. Jenness
et al. 2024; P. Dowler et al. 2015) for discovering
and accessing astronomical images based on meta-
data. SIAv2 is a REpresentational State Transfer
(REST)-based protocol designed for the discovery
and retrieval of image data. It allows, for instance,
querying all images in a given band over a defined
sky region and time period.

Users identify an image or observation of inter-
est and query the service. The result set includes
metadata about the image, such as the sky posi-
tion, time, or band, and a data access URL, which
includes an IVOA Identifier uniquely identifying
the dataset (T. Jenness & G. P. Dubois-Felsmann
2025), allowing the dataset to be retrieved or a
cutout requested via Server-side Operations for
Data Access (IVOA standard) (SODA).

¢ Image Cutout Service: The Rubin Cutout Ser-
vice (R. Allbery 2023, 2024) is based on the IVOA
SODA standard (F. Bonnarel et al. 2017). Users
submit requests specifying sky coordinates and the
cutout size as the radius from the coordinates, and
the service performs the operation on the full im-
age and returns a result set. For DP1, the cutout
service is a single cutout service only where N
cutout requests will require N independent syn-
chronous calls. We expect some form of bulk
cutout service by mid 2026, approximately con-
temporaneously with DP2.

« HiPS Data Service: An authenticated HiPS
(P. Fernique et al. 2017) data service for seam-
less pan-and-zoom access to large-scale co-adds.
It supports fast interactive progressive image ex-
ploration at a range of resolutions.

¢ WebDAV: A Web Distributed Authoring and
Versioning (WebDav) service is provided to enable
users to remotely manage, edit, and organize files
and directories on the RSP as if they were local
files on their own computer. This is especially use-
ful for local development.

6.2.2. Data Butler

The Rubin Data Butler (T. Jenness et al. 2022; N. B.
Lust et al. 2023), is a high-level interface designed to
facilitate seamless access to data for both users and
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software systems. This includes managing storage for-
mats, physical locations, data staging, and database
mappings. A Butler repository contains two compo-
nents:

e the Data Store: A physical storage system for
datasets, e.g., a Portable Operating System Inter-
face (POSIX) file system or S3 object store; and

e the Registry: An Structured Query Language
(SQL)-compatible database that stores metadata
about the datasets in the data store.

For DP1, the Butler repository is hosted in the Google
Cloud, using an (Amazon) Simple Storage Service
(S3)-compatible store for datasets and AlloyDB, a
PostgreSQL-compatible database, for the registry.

In the context of the Butler, a dataset refers to a
unique data product, such as an image, catalog or map,
generated by the observatory or processing pipelines
Datasets belong to one of the various types of data
products, described in §3. The Butler ensures that
each dataset is uniquely identifiable by a combination
of three pieces of information: a data coordinate,
a dataset type, and a run collection. For example,
a dataset that represents a single raw image in the
1 band taken on the night starting 2024-11-11 with
exposure ID 2024111100074 would be represented as
datald='exposure':2024111100074, 'band':'i',
'instrument':'LSSTComCam' and is associated with
the raw DatasetType. For a deep coadd on a patch of
sky in the Seagull field, there would be no exposure di-
mensions and instead the tract, patch and band would
be specified as datald='tract':7850, 'patch':
6, 'band':'g', 'instrument':'LSSTComCam',
skymap="'1lsst_cells_v1' and is associated with the
deep_coadd DatasetType.

The data coordinate is used to locate a dataset in
multi-dimensional space, where dimensions are defined
in terms of scientifically meaningful concepts, such as
instrument, visit, detector or band. For example, a cal-
ibrated single-visit image (§3.1) has dimensions includ-
ing band, instrument, and detector. In contrast, the
visit table (§3.2), a catalog of all calibrated single-epoch
visits in DP1, has only the instrument dimension. The
main dimensions used in DP1 are listed, together with a
brief description, in Table 6. To determine which dimen-
sions are relevant for a specific dataset, the Butler de-
fines dataset types, which associate each dataset with its
specific set of relevant dimensions, as well as the associ-
ated Python type representing the dataset. The dataset
type defines the kind of data a dataset represents, such
as a raw image (raw), a processed catalog (object_-
forced_source), or a sky map (skyMap). Table 7 lists
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Table 6. Descriptions of and valid values for the key data dimensions in DP1. YYYYMMDD signifies date and # signifies a

single 0-9 digit.

Dimension Format/Valid values Description

day_obs YYYYMMDD A day and night of observations that rolls over during daylight hours.

visit YYYYMMDD#HH#HH A sequence of observations processed together; synonymous with “exposure”

exposure YYYYMMDD#HHHHH# X ;?rf)glle exposure of all nine ComCam detectors.

instrument LSSTComCam The instrument name.

detector 0-8 A ComCam detector.

skymap lsst_cells_vi1 A set of tracts and patches that subdivide the sky into rectangular regions
with simple projections and intentional overlaps.

tract See Table 3 A large rectangular region of the sky.

patch 0-99 A rectangular region within a tract.

physical_filter u_02, g 01, i 06, r_03, A physical filter.

z_03,y_04

band u7 g7 r’ i7 Z7 y

An conceptual astronomical passband.

all the dataset types available via the Butler in DP1, to-
gether with the dimensions needed to uniquely identify
a specific dataset and the number of unique datasets of
each type.

It is important to highlight a key difference between
accessing catalog data via the TAP service versus the
Butler. While the TAP service contains entire catalogs,
many of the same catalogs in the Butler are split into
multiple separate catalogs. This is partly due to how
these catalogs are generated, but also because of the
way data is stored within and retrieved from the Butler
repository — it is inefficient to retrieve the entire Source
catalog, for example, from the file system. Instead, be-
cause the Source catalog contains data for sources de-
tected in the visit_images, there is one Source catalog
in the Butler for each visit_image. Similarly, there is
one Object catalog for each deep_coadd. All the cata-
logs described in §3.2, aside from the CcdVisit, SSOb-
ject, SSSource, and Calibration catalogs, are split
within the Butler.

A dataset is associated with one or more Collections;
logical groupings of datasets within the Butler system
that were created or processed together by the same
batch operation. Collections allow multiple datasets
with the same data coordinate to coexist without con-
flict. Collections support flexible, parallel processing by
enabling repeated analyses of the same input data using
different configurations.

For DP1, a subset of the consolidated database con-
tents (§6.5.2) is accessible through the Data Butler.
However, not all metadata from the Visit table (§3.5)
are available. The DP1 Butler is read-only; a writeable
Butler is expected by mid-2026, around the time of DP2.

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

6.2.3. Remote Programmatic Access

The Rubin RSP API can be accessed from a local sys-
tem by data rights holders outside of the RSP, by creat-
ing a user security token. This token can then be used
as a bearer token for API calls to the RSP TAP service.
This capability is especially useful for remote data anal-
ysis using tools such as TOPCAT, as well as enabling
third-party systems, e.g., Community Alert Brokers, to
access Rubin data. Additionally, it supports remote de-
velopment, allowing for more flexible workflows and in-
tegration with external systems.

6.3. Portal Aspect

The Portal Aspect provides an interactive web-based
environment for exploratory data discovery, filtering,
querying ,and visualization of both image and catalog
data, without requiring programming expertise. It en-
ables users to access and analyze large datasets via tools
for catalog queries, image browsing, time-series inspec-
tion, and cross-matching.

The Portal is built on Firefly (X. Wu et al. 2019),
a web application framework developed by the Infrared
Processing and Analysis Center (IPAC). Firefly provides
interactive capabilities such as customizable table views,
image overlays, multi-panel visualizations, and synchro-
nized displays linking catalog and image data.

Designed to support both exploratory data access and
detailed scientific investigation, the Portal delivers an
intuitive user experience, allowing users to visually ana-
lyze data while retaining access to underlying metadata
and query controls.
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Table 7. The name and number of each type of data product in the Butler and the dimensions required to identify

a specific dataset.

Data Product Name in Butler

Required Dimensions Number in DP1

Image Data Products
raw raw
visit_image visit_image
deep_coadd deep_coadd
template_coadd template_coadd
difference_image

Catalog Data Products

difference_image

Source source

Object object

ForcedSource object_forced_source
DiaSource dia_source

DiaObject dia_object
ForcedSourceOnDiaObject dia_object_forced_source
SSSource Ss_source

SSObject ss_object

Visit visit_table

CCDVisit visit_detector_table

instrument, detector, exposure 16125
instrument, detector, visit 15972
band, skymap, tract, patch 2644
band, skymap, tract, patch 2730
instrument, detector, visit 15972

instrument, visit 1786
skymap, tract 29
skymap, tract, patch 636
skymap, tract 25
skymap, tract 25
skymap, tract, patch 597
- 1
- 1
instrument 1
instrument 1

6.4. Notebook Aspect

The Notebook Aspect provides an interactive, web-
based environment built on Jupyter Notebooks, en-
abling users to write and execute Python code directly
on Rubin and LSST data without downloading it locally.
It offers programmatic access to Rubin and LSST data
products, allowing users to query and retrieve datasets,
manipulate and display images, compute derived prop-
erties, plot results, and reprocess data using the LSST
Science Pipelines (§4.1). The environment comes pre-
installed with the pipelines and a broad set of widely
used astronomical software tools, supporting immediate
and flexible data analysis.

6.5. Databases

The user-facing Aspects of the RSP are supported by
several backend databases that store catalog data prod-
ucts, image metadata, and other derived datasets. The
schema for DP1 and other Rubin databases are available
online at https://sdm-schemas.lsst.io.

6.5.1. Qserv

The final 10-year LSST catalog is expected to reach
15 PB and contain measurements for billions of stars
and galaxies across trillions of detections. To support
efficient storage, querying, and analysis of this dataset,
Rubin Observatory developed Qserv (D. L. Wang et al.
2011; F. Mueller et al. 2023) — a scalable, parallel, dis-
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2811

2812

2813

2814

2815

tributed SQL database system. Qserv partitions data
over approximately equal-area regions of the celestial
sphere, replicates data to ensure resilience and high
availability, and uses shared scanning to reduce overall
I/O load. It also supports a package of scientific user-
defined functions (SciSQL: https://smonkewitz.github.
io/scisql/) simplifying complex queries involving spher-
ical geometry, statistics, and photometry. Qserv is
built on robust production-quality components, includ-
ing MariaDB (https://www.mariadb.org/) and XRootD
(https://xrootd.org/). Qserv runs at the USDF and user
access to catalog data is via the TAP service (§6.2.1).
This enables catalog-based analysis through both the
RSP Portal and Notebook Aspects.

Although the small DP1 dataset does not require
Qserv’s full capabilities, we nevertheless chose to use
it for DP1 to accurately reflect the future data access
environment and to gain experience with scientifically-
motivated queries ahead of full-scale deployment. Qserv
is open-source and available on GitHub: https://github.
com/lsst /qserv.

6.5.2. Consolidated Database

The Consolidated Database (ConsDB) (K.-T. Lim
2025) is an SQL-compatible database designed to store
and manage metadata for Rubin Observatory science
and calibration images. Metadata are recorded on a per-
exposure basis and includes information such as the tar-
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get name, pointing coordinates, observation time, physi-
cal filter and band, exposure duration, and environmen-
tal conditions (e.g., temperature, humidity, and wind
speed). These key image metadata are also stored in
the Butler Registry (§6.2.2), however the ConsDB stores
additional information including derived metrics from
image processing and information from the Engineering
and Facility Database (EFD) transformed from the time
dimension to the exposure dimension.

The ConsDB schema is organized into instrument-
specific tables, e.g., LSSTComCam and LSSTCam, fa-
cilitating instrument-specific queries. Within the LSST-
ComCam schema, data is further structured into ta-
bles for individual exposures and detectors. An example
query on the DP1 dataset might retrieve all visits within
a specified time range in the r-band for a given DP1 tar-
get.

The ConsDB is hosted at the USDF. Following the
initial release of DP1, a release of the DP1 exposure-
specific ConsDB data will be made available through the
RSP, and accessible externally via TAP. The detailed
LSSTComCam schema can be found at: https://sdm-
schemas.lIsst.io/cdb_ lsstcomcam.html

7. SUPPORT FOR COMMUNITY SCIENCE

The Rubin Observatory has a science community that
encompasses thousands of individuals worldwide, with
a broad range of experience and expertise in astronomy
in general, and in the analysis of optical imaging data
specifically.

Rubin’s model to support this diverse community to
access and analyze DP1 emphasizes self-help via docu-
mentation and tutorials, and employs an open platform
for asynchronous issue reporting that enables crowd-
sourced solutions. These two aspects of community sup-
port are augmented by virtual engagement activities. In
addition, Rubin supports its Users Committee to advo-
cate on behalf of the science community, and supports
the eight LSST Science Collaborations (§7.6).

All of the resources for scientists that are discussed in
this section are discoverable by browsing the For Scien-
tists pages of the Rubin Observatory website!'"?.

7.1. Documentation

The data release documentation for DP1'%3 provides
an overview of the LSSTComCam observations, detailed
descriptions of the data products, and a high-level sum-
mary of the processing pipelines. Although much of its
content overlaps significantly with this paper, the doc-
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umentation is presented as a searchable, web-based re-
source built using Sphinx'%, with a focus on enabling
scientific use of the data products.

7.2. Tutorials

A suite of tutorials that demonstrate how to access
and analyze DP1 using the RSP acompanies the DP1
release. Jupyter Notebook tutorials are available via
the “Tutorials” drop-down menu within the Notebook
aspect of the RSP. Tutorials for the Portal and API
aspects of the RSP can be found in the data release
documentation.

These tutorials are designed to be inclusive, accessi-
ble, clear, focused, and consistent. Their format and
contents follow a set of guidelines (M. L. Graham et al.
2025) that are informed by modern standards in techni-
cal writing.

7.3. Community Forum

The venue for all user support is the Rubin Commu-
nity Forum!%®.

Questions about any and all aspects of the Rubin
data products, pipelines, and services should be posted
as new topics in the Support category. This includes
beginner-level and “naive” questions, advanced scien-
tific analysis questions, technical bug reports, account
and data access issues, and everything in between. The
Support category of the Forum is monitored by Rubin
staff, who aim to respond to all new unsolved topics
within 24 hours.

The Rubin Community Forum is built on the open-
source Discourse platform. It was chosen because, for
a worldwide community of ten thousand Rubin users, a
traditional (i.e., closed) help desk represents a risk to
Rubin science (e.g., many users with the same question
having to wait for responses). The open nature of the
Forum enables self-help by letting users search for sim-
ilar issues, and enables crowd-sourced problem solving
(and avoids knowledge bottlenecks) by letting users help
users.

7.4. Engagement Activities

A variety of live virtual and in-person workshops and
seminars offer learning opportunities to scientists and
students working with DP1.

o Rubin Science Assemblies (weekly, virtual, 1
hour): alternates between hands-on tutorials
based on the most recent data release and open
drop-in “office hours” with Rubin staff.

104 https://www.sphinx-doc.org/
105 https://community.lsst.org/
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¢ Rubin Data Academy (annual, virtual, 3-4 days):
an intense set of hands-on tutorials based on the
most recent data release, along with co-working
and networking sessions.

e Rubin Community Workshop (annual, virtual, 5
days), a science-focused conference of contributed
posters, talks, and sessions led by members of the
Rubin science community and Rubin staff

For schedules and connection information, visit the
For Scientists pages of the Rubin Observatory website.
Requests for custom tutorials and presentations for re-
search groups are also accommodated.

7.5. Users Committee

This committee is charged with soliciting feedback
from the science community, advocating on their behalf,
and recommending science-driven improvements to the
LSST data products and the Rubin Science Platform
tools and services. Community members are encour-
aged to attend their virtual meetings and raise issues
to their attention, so they can be included in the com-
mittee’s twice-yearly reports to the Rubin Observatory
Director.

The community’s response to DP1 will be especially
valuable input to DP2 and Data Release 1 (DR1), and
the Users Committee encourages all users to interact
with them. For a list of members and contact informa-
tion, visit the For Scientists pages of the Rubin Obser-
vatory website.

7.6. Science Collaborations

The eight LSST Science Collaborations are indepen-
dent, worldwide communities of scientists, self-organized
into collaborations based on their research interests and
expertise. Members work together to apply for funding,
build software infrastructure and analysis algorithms,
and incorporate external data sets into their LSST-
based research.

The Science Collaborations also provide valuable ad-
vice to Rubin Observatory on the operational strategies
and data products to accomplish specific science goals,
and Rubin Observatory supports the collaborations via
staff liaisons and regular virtual meetings with Rubin
operations leadership.

8. SUMMARY AND FUTURE RELEASES

Rubin Data Preview 1 (DP1) offers an initial look at
the first on-sky data products and access services from
the Vera C. Rubin Observatory. DP1 forms part of Ru-
bin’s Early Science Program, and provides the scien-
tific community with an early opportunity to familiarize
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themselves with the data formats and access infrastruc-
ture for the forthcoming Legacy Survey of Space and
Time. This early release has a proprietary period of two
years, during which time it is available to Rubin data
rights holders only via the cloud-based Rubin Science
Platform (RSP).

In this paper we have described the completion status
of the observatory at the time of data acquisition, the
commissioning campaign that forms the basis of DP1,
and the processing pipelines used to produce early ver-
sions of data products. We provide details on the data
products, their characteristics and known issues, and
describe the Rubin Science Platform for access to and
analysis of DP1.

The data products described in this paper derive from
observations obtained by LSSTComCam. LSSTCom-
Cam contains only around 5% the number of CCDs as
the full LSST Science Camera (LSSTCam), yet the DP1
dataset that it has produced will already enable a very
broad range of science. At 3.5 TB in size, DP1 covers
a total area of ~15 deg? and contains 1792 single-epoch
images, 2644 deep coadded images and 2.3 million dis-
tinct astrophysical objects, including 93 new asteroid
discoveries.

While some data products anticipated from the LSST
are not yet available, e.g., cell-based coadds, DP1 in-
cludes several products that will not be provided in fu-
ture releases. Notably, difference images are included in
DP1 as pre-generated products; in future releases, these
will instead be generated on demand via dedicated ser-
vices. The inclusion of pre-generated difference images
in DP1 is feasible due to the relatively small size of the
dataset, an approach that will not scale to the signifi-
cantly larger data volumes expected in subsequent re-
leases.

The RSP is continually under development, and new
functionality will continue to be deployed incrementally
as it becomes available, and independent of the future
data release schedule. User query history capabilities,
context-aware documentation and a bulk cutout services
are just a few of the services currently under develop-
ment.

Coincident with the release of DP1, Rubin Obser-
vatory begins its Science Validation Surveys with the
LSST Science Camera. This final commissioning phase
will produce a dataset that will form the foundation for
the second Rubin Data Preview, DP2, expected around
mid-to-late 2026. Full operations, marking the start
of the LSST, are expected to commence by the end of
2025.
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